8,136 research outputs found

    Deformed Density Matrix and Quantum Entropy of the Black Hole

    Get PDF
    In the present work the approach - density matrix deformation - earlier developed by the author to study a quantum theory of the Early Universe (Planck's scales) is applied to study a quantum theory of black holes. On this basis the author investigates the information paradox problem, entropy of the black hole remainders after evaporation, and consistency with the holographic principle. The possibility for application of the proposed approach to the calculation of quantum entropy of a black hole is considered.Comment: 17 pages, Latex, new referenc

    Non-Unitary and Unitary Transitions in Generalized Quantum Mechanics, New Small Parameter and Information Problem Solving

    Get PDF
    Quantum Mechanics of the Early Universe is considered as deformation of a well-known Quantum Mechanics. Similar to previous works of the author, the principal approach is based on deformation of the density matrix with concurrent development of the wave function deformation in the respective Schr{\"o}dinger picture, the associated deformation parameter being interpreted as a new small parameter. It is demonstrated that the existence of black holes in the suggested approach in the end twice causes nonunitary transitions resulting in the unitarity. In parallel this problem is considered in other terms: entropy density, Heisenberg algebra deformation terms, respective deformations of Statistical Mechanics, - all showing the identity of the basic results. From this an explicit solution for Hawking's informaion paradox has been derived.Comment: 18 page

    Nonergodisity of a time series obeying L\'evy statistics

    Full text link
    Time-averaged autocorrelation functions of a dichotomous random process switching between 1 and 0 and governed by wide power law sojourn time distribution are studied. Such a process, called a L\'evy walk, describes dynamical behaviors of many physical systems, fluorescence intermittency of semiconductor nanocrystals under continuous laser illumination being one example. When the mean sojourn time diverges the process is non-ergodic. In that case, the time average autocorrelation function is not equal to the ensemble averaged autocorrelation function, instead it remains random even in the limit of long measurement time. Several approximations for the distribution of this random autocorrelation function are obtained for different parameter ranges, and favorably compared to Monte Carlo simulations. Nonergodicity of the power spectrum of the process is briefly discussed, and a nonstationary Wiener-Khintchine theorem, relating the correlation functions and the power spectrum is presented. The considered situation is in full contrast to the usual assumptions of ergodicity and stationarity.Comment: 15 pages, 10 figure

    Minimal Length and the Existence of Some Infinitesimal Quantities in Quantum Theory and Gravity

    Get PDF
    In this work it is demonstrated that, provided a theory involves a minimal length, this theory must be free from such infinitesimal quantities as infinitely small variations in surface of the holographic screen, its volume, and entropy. The corresponding infinitesimal quantities in this case must be replaced by the "minimal variations possible" -- finite quantities dependent on the existent energies. As a result, the initial low-energy theory (quantum theory or general relativity) inevitably must be replaced by a minimal-length theory that gives very close results but operates with absolutely other mathematical apparatus.Comment: 23 pages, Late

    Probable Entropic Nature of Gravity in Ultraviolet and Infrared Limits, Part I. An Ultraviolet Case

    Get PDF
    This work presents a study of the possibility for extending the well-known results of E.Verlinde concerning the entropic nature of gravity to the ultraviolet region (Planck's energies) and also the derivation of quantum corrections to Einstein EquationsComment: 20 pages, Latex, v.3, some important correction
    corecore