12 research outputs found

    Testing of a tri-instrumented-treadmill unit for kinetic analysis of locomotion tasks in static and dynamic loading conditions

    No full text
    In this study, we present a multi-treadmill system instrumented with three force platforms capable of measuring vertical and shear ground reaction forces and moments during both walking and running. Linearity, belts speed variations, repeatability of the measures, cross-talk, natural frequency, instrumental noise, moving part induced noise and drift were investigated. The noise due to vibrations and to moving parts was also investigated having a subject walking and running on the treadmill. The linearity test results showed a high linearity of all three treadmill force platforms, and vertical force natural frequency values of 219, 308, 307 Hz, obtained for the three force platforms, were considered appropriate for the investigation of walking and running. The instrumental noise did not appear to be a significant source of error. The characteristics of the noise due to vibrations and moving parts changed when in the presence of a subject walking and running on the treadmill. For walking trials, averaging of gait cycles led to a systematic improvement of the signal to noise ratio, particularly for the medio-lateral component of the force. For running trials, even though averaging was not as beneficial as for walking trials, the greater force amplitude led to a better signal to noise ratio value. This instrumented treadmill demonstrated acceptable accuracy and signal to noise ratios for all ground reaction force components such that it can be useful for a variety of research and clinical gait analysis applications

    Improved Extratropical North Atlantic Atmosphere–Ocean Variability with Increasing Ocean Model Resolution

    No full text
    North Atlantic atmosphere-ocean variability is assessed in climate model simulations from HighResMIP that have low resolution (LR) or high resolution (HR) in their atmosphere and ocean model components. It is found that some of the LR simulations overestimate the low-frequency variability of subpolar sea surface temperature (SST) anoma-lies and underestimate its correlation with the NAO compared to ERA5. These deficiencies are significantly reduced in the HR simulations, and it is shown that the improvements are related to a reduction of intrinsic (non-NAO-driven) variability of the subpolar ocean circulation. To understand the cause of the overestimated intrinsic subpolar ocean variability in the LR simulations, a link is demonstrated between the amplitude of the subpolar ocean variability and the mean state of the Labrador-Irminger Seas. Supporting previous studies, the Labrador-Irminger Seas tend to be colder and fresher in the LR simulations compared to the HR simulations and oceanic observations from EN4. This promotes upper-ocean density anomalies in this region to be more salinity-controlled in the LR simulations versus more temperature-controlled in the HR simulations and EN4 observations. It is argued that this causes the excessive subpolar ocean variability in the LR simu-lations by favoring a positive feedback between subpolar upper-ocean salinity and Atlantic meridional overturning circula-tion (AMOC) anomalies, rather than a negative feedback between subpolar SST and AMOC anomalies as in the HR simulations. The findings overall suggest that the subpolar ocean mean state impacts the variability of the ocean circulation and SSTs, including their relationship with the atmospheric circulation, in the extratropical North Atlantic

    Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth

    No full text
    Pathological fetal growth is associated with perinatal morbidity and the development of diabetes and cardiovascular disease later in life. Placental nutrient transport is a primary determinant of fetal growth. In human intrauterine growth restriction (IUGR) the activity of key placental amino acid transporters, such as systems A and L, is decreased. However the mechanisms regulating placental nutrient transporters are poorly understood. We tested the hypothesis that the mammalian target of rapamycin (mTOR) signalling pathway regulates amino acid transport in the human placenta and that the activity of the placental mTOR pathway is reduced in IUGR. Using immunohistochemistry and culture of trophoblast cells, we show for the first time that the mTOR protein is expressed in the transporting epithelium of the human placenta. We further demonstrate that placental mTOR regulates activity of the l-amino acid transporter, but not system A or taurine transporters, by determining the mediated uptake of isotope-labelled leucine, methylaminoisobutyric acid and taurine in primary villous fragments after inhibition of mTOR using rapamycin. The protein expression of placental phospho-S6K1 (Thr-389), a measure of the activity of the mTOR signalling pathway, was markedly reduced in placentas obtained from pregnancies complicated by IUGR. These data identify mTOR as an important regulator of placental amino acid transport, and provide a mechanism for the changes in placental leucine transport in IUGR previously demonstrated in humans. We propose that mTOR functions as a placental nutrient sensor, matching fetal growth with maternal nutrient availability by regulating placental nutrient transport

    Utopia, Dystopia, and Sublime Apocalypse in Montana's Church Universal and Triumphant

    No full text

    References

    No full text

    Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates

    No full text

    References

    No full text
    corecore