983 research outputs found

    Recycled waste powders for alkali-activated paving blocks for urban pavements: A full laboratory characterization

    Get PDF
    Paving blocks are today a popular paving solution for urban surfaces. Considering the wide variety of products currently on the market, it is possible to build pavements that differ in terms of functionality, bearing capacity, skid resistance, visual impact, and aesthetic integration with the surrounding landscape. Interlocking concrete paving block is the most common construction technology considering its low cost and its easy installation. Different wastes and second-hand materials have recently been tested in order to completely or partially replace the raw materials used for the production of paving blocks. In this paper, a waste basalt powder is used for the production of alternative paving blocks through the alkali-activation process. Two different synthetic blocks were produced, with and without aggregates. Taking into account the EN 1338 standard for concrete paving blocks, a complete laboratory characterization is proposed for the two experimental blocks. Tests highlighted positive results and downsides that need to be optimized in order to convert the laboratory production to an industrial scale

    Experimental application of Waste Bleaching Clays in the production of construction materials for Civil Infrastructures

    Get PDF
    The respect for the environment and the saving of natural resources are current problems, which affect all the sectors within a modern society. In the civil engineering field, the main action to overcome these issues is related to the research on innovative solutions, able to combine the environmental benefits with the reduction of costs. As a consequence, the recycling and reuse of wastes and industrial-by products for the production of new materials represent the new frontier in the constructions sector. In the light of the above, the present work shows a laboratory study on the application of a waste digested bleaching clay for the production of materials within civil infrastructures field. The final aim of the project is to give scientific evidence of the use of this industrial-by product as construction material. Furthermore, to combine the dual effect of reducing the quantities of material disposed to landfill with the definition of a functional intended use for this waste. The research project was divided in four macro-activities, each of which is focused on a specific sector of the civil infrastructures. In every activity, the validation of the possible experimental application was given through a full laboratory characterization and by the comparison of results with the requirements imposed by the most common technical specifications for building materials

    Synthetic aggregates for the production of innovative low impact porous layers for urban pavements

    Get PDF
    According to the latest estimates, 40% of urban areas are covered by pavements. One of the most remarkable effects on the urban environment is the increase in impermeable surfaces which leads to problems related to water infiltration into the ground and the increase in wash-off volumes. The use of permeable and porous layers in urban applications for cycle lanes, footpaths and parking areas is growing in interest, increasing the potential for control and management of urban runoff. In this paper, a physical and mechanical characterization is proposed of an innovative mixture, prepared with a polymeric transparent binder for semi-porous layers with reduced contribution to the urban heat island effect. Two versions of this mixture are compared, one with just virgin and the one with artificial synthetic aggregates, produced through the alkali-activation of waste basalt powder. Results show suitable properties for both materials if compared to porous asphalt concretes in traditional pavements. Furthermore, the application of synthetic aggregates seems to be a viable solution for the production of innovative and eco-friendly mixtures, allowing the recycling of waste materials

    Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications

    Get PDF
    An extensive body of literature describes anticancer property of dichloroacetate (DCA), but its effective clinical administration in cancer therapy is still limited to clinical trials. The occurrence of side effects such as neurotoxicity as well as the suspicion of DCA carcinogenicity still restricts the clinical use of DCA. However, in the last years, the number of reports supporting DCA employment against cancer increased also because of the great interest in targeting metabolism of tumour cells. Dissecting DCA mechanism of action helped to understand the bases of its selective efficacy against cancer cells. A successful coadministration of DCA with conventional chemotherapy, radiotherapy, other drugs, or natural compounds has been tested in several cancer models. New drug delivery systems and multiaction compounds containing DCA and other drugs seem to ameliorate bioavailability and appear more efficient thanks to a synergistic action of multiple agents. The spread of reports supporting the efficiency of DCA in cancer therapy has prompted additional studies that let to find other potential molecular targets of DCA. Interestingly, DCA could significantly affect cancer stem cell fraction and contribute to cancer eradication. Collectively, these findings provide a strong rationale towards novel clinical translational studies of DCA in cancer therapy

    Mixture Optimization of Concrete Paving Blocks Containing Waste Silt

    Get PDF
    open3noMost of the waste materials recycled for the production of new construction materials are by-products of various manufacturing processes, such as the aggregate washing process. Recycling such materials is of paramount importance since it could reduce the adverse environmental impacts resulting from landfilling. Various studies have attempted to recycle different types of waste materials and by-products into concrete paving blocks. However, the availability of literature on concrete paving blocks containing waste silt is quite scarce. Thus, the current paper focuses on mix design optimization and production of concrete paving blocks containing high amounts of waste silt resulting from the aggregate production process. Using the mixture Design of Experiments (DOE), 12 sets of concrete paving blocks with different aggregate blends were produced to optimize the mix design. Once the final mix design was achieved, the physical and mechanical properties of the concrete paving blocks were investigated following the EN 1338 standard. Shape and dimension measurements and various tests, including water absorption, tensile splitting strength, abrasion resistance, and slip/skid resistance were conducted on the experimental concrete paving samples. Overall, the produced concrete paving blocks showed promising properties for future applications in pedestrian walking paths.This paper was written for the SAFERUP! Project, which received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement No. 765057.openSolouki, Abbas; Tataranni, Piergiorgio; Sangiorgi, CesareSolouki, Abbas; Tataranni, Piergiorgio; Sangiorgi, Cesar

    Preliminary Evaluation of Geopolymer Mix Design Applying the Design of Experiments Method

    Get PDF
    The use of waste materials in road construction is becoming widely spread due to economic and environmental needs. Construction and demolition waste materials and mining residues have been studied for a long time. However, the use of fine materials, mainly from mine tailing and mining residue, is still complex, as they can be used as inert materials into the mix or can become a reactive agent in geopolymer mixes. In the present paper, an experimental application of basalt powder is proposed in the geopolymerisation reaction to produce artificial aggregates. In order to understand the input and output variables’ interactions used in the mix design, a statistical method called Design of Experiments was applied. With this design approach, it was possible to optimize the mix design of the experimental geopolymer mortars. The study evaluated several mixes with respect to their workability, compressive strength, and success rate of aggregates production. Finally, a model for predicting compressive strength is proposed and evaluated

    Preliminary Evaluation of Cement Mortars Containing Waste Silt Optimized with the Design of Experiments Method

    Get PDF
    Every year, up to 3 billion tons of non-renewable natural aggregates are demanded by the construction sector and approximately 623 million tons of waste (mining and quarrying) was produced in 2018. Global efforts have been made to reduce the number of virgin aggregates used for construction and infrastructure sectors. According to the revised waste framework directive in Europe, recycling at least 70% of construction and demolition waste materials by 2020 was obligatory for all member states. Nonetheless, quarries must work at full capacity to keep up with the demands, which has made quarry/mining waste management an important aspect during the past decades. Amongst the various recycling methods, quarry waste can be included in cement mortar mixtures. Thus, the current research focuses on producing cement mortars by partially substituting natural sand with the waste silt obtained from the limestone aggregate production in S.A.P.A.B.A. s.r.l. (Italy). A Design of Experiments (DOE) method is proposed to define the optimum mix design, aiming to include waste silt in cement mortar mixtures without affecting the final performance. Three cement mortar beams were produced and tested for each of the 49 randomized mixtures defined by the DOE method. The obtained results validate the design approach and suggest the possibility of substituting up to 20% of natural sand with waste silt in cement mortar mixtures

    Application of Mining Waste Powder as filler in Hot Mix Asphalt

    Get PDF
    Asphalt concrete mixtures are composed of two main components: aggregates and binder. The fraction of aggregates passing through the 63\u3bcm sieve is traditionally considered as filler. During years, several researches have shown the importance and the influence of filler in controlling the physical and mechanical properties of Hot Mix Asphalts (HMAs). The main objective of this research is to investigate and to assess the effects given by the use of Mining Waste Powder (MWP) within HMAs in total substitution of traditional limestone filler. The MWP used in this study is a residual of the tungsten extraction process in Panasqueira (Portugal) mine. The evaluation of properties conferred by the presence of the MWP filler within asphalt mixtures is based on a physical and mechanical laboratory characterization. For this purpose, tests have been performed both on bituminous mastics and on HMAs. Results indicate that the use of MWP in total substitution of limestone filler does not negatively affect the performances of HMAs and their bituminous mastics

    Waste Silt as Filler in Hot Mix Asphalt: A Laboratory Characterization

    Get PDF
    Several studies aimed to improve both the performance and environmental impact of asphalt pavements using waste and recycled materials as fillers. This study focused on the effect of untreated and thermally treated silt as a filler in hot mix asphalt (HMA). The silt used in the study was a byproduct from a local aggregate production plant in Bologna, Italy. Mineral and chemical analyses revealed that the waste silt required thermal treatment at 750 C for 2 h. The study compared the use of calcined silt, untreated silt, and a common limestone filler in the production of asphalt mastics and HMA specimens. The rheological properties of the mastics were analyzed using frequency sweep and multiple stress creep recovery tests. The physical and mechanical characteristics of the HMAs were evaluated through the air voids content, Marshall stability and indirect tensile strength tests. Additionally, the water susceptibility and thermal sensitivity of the HMAs were evaluated through the indirect tensile strength ratio and indirect tensile stiffness modulus at different testing temperatures. The results showed that the addition of calcined silt had no significant effect on the rheological properties of the mastic or the optimal binder content. However, the samples produced with thermally treated silt showed the highest stiffness and resistance to rutting compared with the other samples. On the other hand, the addition of untreated silt slightly decreased the stiffness value of the samples. In conclusion, the use of waste silt as a filler has potential as a sustainable and eco-friendly solution for HMAs
    • …
    corecore