3,024 research outputs found

    Quantum characterization of bipartite Gaussian states

    Full text link
    Gaussian bipartite states are basic tools for the realization of quantum information protocols with continuous variables. Their complete characterization is obtained by the reconstruction of the corresponding covariance matrix. Here we describe in details and experimentally demonstrate a robust and reliable method to fully characterize bipartite optical Gaussian states by means of a single homodyne detector. We have successfully applied our method to the bipartite states generated by a sub-threshold type-II optical parametric oscillator which produces a pair of thermal cross-polarized entangled CW frequency degenerate beams. The method provide a reliable reconstruction of the covariance matrix and allows to retrieve all the physical information about the state under investigation. These includes observable quantities, as energy and squeezing, as well as non observable ones as purity, entropy and entanglement. Our procedure also includes advanced tests for Gaussianity of the state and, overall, represents a powerful tool to study bipartite Gaussian state from the generation stage to the detection one

    Theatre Reviews

    Get PDF
    The Tempest. Dir. Silviu Purcarete. The National Theatre “Marin Sorescu” of Craiova, Romania. 16th Shakespeare Festival, Gdansk, Poland   Richard III. Dir. Gabriel Villela. Blanes Museum Garden, Montevideo, Uruguay Henry V. Dir. Des McAnuff. Stratford Shakespeare Festival, Ontario, Canada Julius Caesar. Dir. Gregory Doran. Royal Shakespeare Company A Midsummer Night’s Dream. Adapted and dir. Georgina Kakoudaki. Theatre groups _2 and 4Frontal, Theatro tou Neou Kosmou, Greece Julius Caesar: Scripta Femina. Dir. Roubini Moschochoriti. Theatre group Anima Kinitiras Studio, Greec

    Superstrings on AdS_4 x CP^3 from Supergravity

    Get PDF
    We derive from a general formulation of pure spinor string theory on type IIA backgrounds the specific form of the action for the AdS_4 x P^3 background. We provide a complete geometrical characterization of the structure of the superfields involved in the action.Comment: 32 pages, Latex, no figure

    Revealing microbial recognition by specific antibodies

    Get PDF
    Background: Recognition of microorganisms by antibodies is a vital component of the human immune response. However, there is currently very limited understanding of immune recognition of 50 % of the human microbiome which is made up of as yet un-culturable bacteria. We have combined the use of flow cytometry and pyrosequencing to describe the microbial composition of human samples, and its interaction with the immune system. Results: We show the power of the technique in human faecal, saliva, oral biofilm and breast milk samples, labeled with fluorescent anti-IgG or anti-IgA antibodies. Using Fluorescence-Activated Cell Sorting (FACS), bacterial cells were separated depending on whether they are coated with IgA or IgG antibodies. Each bacterial population was PCR-amplified and pyrosequenced, characterizing the microorganisms which evade the immune system and those which were recognized by each immunoglobulin. Conclusions: The application of the technique to healthy and diseased individuals may unravel the contribution of the immune response to microbial infections and polymicrobial diseases

    Couplings of N=1 chiral spinor multiplets

    Full text link
    We derive the action for chiral spinor multiplets coupled to vector and scalar multiplets. We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric tensors in the spinor superfield and additional Green-Schwarz couplings to vector fields. We observe that supersymmetry provides mass terms for the scalars in the spinor multiplet which do not arise from eliminating an auxiliary field. We construct the dual action by explicitly performing the duality transformations in superspace and give its component form.Comment: 17 pages, v2 small change

    Spinor Algebras

    Get PDF
    We consider supersymmetry algebras in space-times with arbitrary signature and minimal number of spinor generators. The interrelation between super Poincar\'e and super conformal algebras is elucidated. Minimal super conformal algebras are seen to have as bosonic part a classical semimisimple algebra naturally associated to the spin group. This algebra, the Spin(s,t)(s,t)-algebra, depends both on the dimension and on the signature of space time. We also consider maximal super conformal algebras, which are classified by the orthosymplectic algebras.Comment: References added, misprints corrected. Version to appear in the Journal of Geometry and Physic

    The Findings from the OECD/NEA/CSNI UMS (Uncertainty Method Study)

    Get PDF
    Within licensing procedures there is the incentive to replace the conservative requirements for code application by a “best estimate” concept supplemented by an uncertainty analysis to account for predictive uncertainties of code results. Methods have been developed to quantify these uncertainties. The Uncertainty Methods Study (UMS) Group, following a mandate from CSNI (Committee on the Safety of Nuclear Installations) of OECD/NEA (Organization for Economic Cooperation and Development / Nuclear Energy Agency), has compared five methods for calculating the uncertainty in the predictions of advanced “best estimate” thermal-hydraulic codes. Most of the methods identify and combine input uncertainties. The major differences between the predictions of the methods came from the choice of uncertain parameters and the quantification of the input uncertainties, i.e. the wideness of the uncertainty ranges. Therefore, suitable experimental and analytical information has to be selected to specify these uncertainty ranges or distributions. After the closure of the Uncertainty Method Study (UMS) and after the report was issued comparison calculations of experiment LSTF-SB-CL-18 were performed by University of Pisa using different versions of the RELAP 5 code. It turned out that the version used by two of the participants calculated a 170 K higher peak clad temperature compared with other versions using the same input deck. This may contribute to the differences of the upper limit of the uncertainty ranges. A ‘bifurcation’ analysis was also performed by the same research group also providing another way of interpreting the high temperature peak calculated by two of the participants

    CIAU Method for Uncertainty Evaluation for System Thermal-Hydraulic Code Calculations

    Get PDF
    Best-Estimate calculation results from complex thermal-hydraulic system codes (like Relap5, Cathare, Athlet, Trace, etc..) are affected by unavoidable approximations that are un-predictable without the use of computational tools that account for the various sources of uncertainty. Therefore the use of best-estimate codes within the reactor technology, either for design or safety purposes, implies understanding and accepting the limitations and the deficiencies of those codes. Uncertainties may have different origins ranging from the approximation of the models, to the approximation of the numerical solution, and to the lack of precision of the values adopted for boundary and initial conditions. The amount of uncertainty that affects a calculation may strongly depend upon the codes and the modeling techniques (i.e. the code’s users). A consistent and robust uncertainty methodology must be developed taking into consideration all the above aspects. The CIAU (Code with the capability of Internal Assessment of Uncertainty) and the UMAE (Uncertainty Methodology based on Accuracy Evaluation) methods have been developed by University of Pisa (UNIPI) in the framework of a long lasting research activities started since 80’s and involving several researchers. CIAU is extensively discussed in the available technical literature, Refs. [1, 2, 3, 4, 5, 6, 7], and tens of additional relevant papers, that provide comprehensive details about the method, can be found in the bibliography lists of the above references. Therefore, the present paper supplies only ‘spot-information’ about CIAU and focuses mostly on the applications to some cases of industrial interest. In particular the application of CIAU to the OECD BEMUSE (Best Estimate Methods Uncertainty and Sensitivity Evaluation, [8, 9]) project is discussed and a critical comparison respect with other uncertainty methods (in relation to items like: sources of uncertainties, selection of the input parameters and quantification of their uncertainty ranges, ranking process, etc.) is presented

    Methodology for Pressurized Thermal Shock Analysis in Nuclear Power Plant

    Get PDF
    The relevance of the fracture mechanics in the technology of the nuclear power plant is mainly connected to the risk of a catastrophic brittle rupture of the reactor pressure vessel. There are no feasible countermeasures that can mitigate the effects of such an event that impair the capability to maintain the core covered even in the case of properly functioning of the emergency systems. The origin of the problem is related to the aggressive environment in which the vessel operates for long term (e.g. more than 40 years), characterized by high neutron flux during normal operation. Over time, the vessel steel becomes progressively more brittle in the region adjacent to the core. If a vessel had a preexisting flaw of critical size and certain severe system transients occurred, this flaw could propagate rapidly through the vessel, resulting in a through-wall crack. The severe transients that can lead the nuclear power plant in such conditions, known as Pressurized Thermal Shock (PTS), are characterized by rapid cooling (i.e., thermal shock) of the a part of the internal reactor pressure vessel surface that may be combined with repressurization can create locally a sudden increase of the stresses inside the vessel wall and lead to the suddenly growth of the flaw inside the vessel thickness. Based on the long operational experience from nuclear power plants equipped with reactor pressure vessel all over the world, it is possible to conclude that the simultaneous occurrence of critical-size flaws, embrittled vessel, and a severe PTS transient is a very low probability event. Moreover, additional studies performed at utilities and regulatory authorities levels have shown that the RPV can operate well beyond the original design life (40 years) because of the large safety margin adopted in the design phase. A better understanding and knowledge of the materials behavior, improvement in simulating in a more realistic way the plant systems and operational characteristics and a better evaluation of the loads on the RPV wall during the PTS scenarios, have shown that the analysis performed during the 80’s were overly conservative, based on the tools and knowledge available at that time. Nowadays the use of best estimate approach in the analyses, combined with tools for the uncertainty evaluation is taking more consideration to reduce the safety margins, even from the regulatory point of view. The US NRC has started the process to revise the technical base of the PTS analysis for a more risk-informed oriented approach. This change has the aim to remove the un-quantified conservatisms in all the steps of the PTS analysis, from the selection of the transients, the adopted codes and the criteria for conducting the analysis itself thus allow a more realistic prediction. This change will not affect the safety, because beside the operational experience, several analysis performed by thermal hydraulic, fracture mechanics and Probabilistic Safety Assessment (PSA) point of view, have shown that the reactor fleet has little probability of exceeding the limits on the frequency of reactor vessel failure established from NRC guidelines on core damage frequency and large early release frequency through the period of license extension. These calculations demonstrate that, even through the period of license extension, the likelihood of vessel failure attributable to PTS is extremely low (≈10-8/year) for all domestic pressurized water reactors. Different analytical approaches have been developed for the evaluation of the safety margin for the brittle crack propagation in the rector pressure vessel under PTS conditions. Due to the different disciplines involved in the analysis: thermal-hydraulics, structural mechanics and fracture mechanics, different specialized computer codes are adopted for solving single part of the problem. The aims of this chapter is to present all the steps of a typical PTS analysis base on the methodology developed at University of Pisa with discussion and example calculation results for each tool adopted and their use, based on a more realistic best estimate approach. This methodology starts with the analysis of the selected scenario by mean a System Thermal-Hydraulic (SYS-TH) code such as RELAP5 [2][3], RELAP5-3D [1], CATHARE2 [4][6], etc. for the analysis of the global behavior of the plant and for the evaluation of the primary side pressure and fluid temperature at the down-comer inlet. For a more deep investigation of the cooling load on the rector pressure vessel internal surface at small scale, a Computational Fluid Dynamics (CFD) code is used. The calculated temperature profile in the down-comer region is transferred to a Finite Element (FE) structural mechanics code for the evaluation of the stresses inside the RPV wall. The stresses induced by the pressure in the primary side are also evaluated. The stress intensity factor at crack tip is evaluated by mean the weight function method based on a simple integration of the stresses along the crack border multiplied by the weight function. The values obtained are compared with the critical stress intensity factor typical of the reactor pressure vessel base material for the evaluation of the safety margin
    • 

    corecore