5,623 research outputs found

    On dilatons with intrinsic decouplings

    Full text link
    In this paper, we show that there exists a class of dilaton models with non-trivial scalar-Ricci and scalar-matter couplings that strongly reduces observational deviations from general relativity in the dust limit. Essentially, depending on the coupling between the dilaton and the fundamental matter fields, various strengths of decoupling can appear. They range from no decoupling at all to a total decoupling state. In this latter case, the theory becomes indistinguishable from general relativity (in the dust limit), as all dilatonic effects can be re-absorbed through a simple change of unit. Furthermore, for particular decouplings, we show that the phenomenology used to constrain theories from universality of free fall observations is significantly different from what is commonly used. Finally, from a fundamental perspective, the class of non-dynamical decouplings proposed in this paper might play a role in the current non-observation of any deviation from general relativity (in both tests of the equivalence principle and of the parametrized post-Newtonian formalism).Comment: 7 pages, comments welcom

    Post-Newtonian phenomenology of a massless dilaton

    Full text link
    In this paper, we present extensively the observational consequences of massless dilaton theories at the post-Newtonian level. We extend previous work by considering a general model including a dilaton-Ricci coupling as well as a general dilaton kinetic term while using the microphysical dilaton-matter coupling model proposed in [Damour and Donoghue, PRD 2010]. We derive all the expressions needed to analyze local gravitational observations in a dilaton framework, which is useful to derive constraints on the dilaton theories. In particular, we present the equations of motion of celestial bodies (in barycentric and planetocentric reference frames), the equation of propagation of light and the evolution of proper time as measured by specific clocks. Particular care is taken in order to derive properly the observables. The resulting equations can be used to analyse a large numbers of observations: universality of free fall tests, planetary ephemerides analysis, analysis of satellites motion, Very Long Baseline Interferometry, tracking of spacecraft, gravitational redshift tests, ...Comment: 27 pages, comments welcom

    Thermalization of Heavy Quarks in the Quark-Gluon Plasma

    Get PDF
    Charm- and bottom-quark rescattering in a Quark-Gluon Plasma (QGP) is investigated with the objective of assessing the approach towards thermalization. Employing a Fokker-Planck equation to approximate the collision integral of the Boltzmann equation we augment earlier studies based on perturbative parton cross sections by introducing resonant heavy-light quark interactions. The latter are motivated by recent QCD lattice calculations which indicate the presence of "hadronic" states in the QGP. We model these states by colorless (pseudo-) scalar and (axial-) vector D- and B-mesons within a heavy-quark effective theory framework. We find that the presence of these states at moderate QGP temperatures substantially accelerates the kinetic equilibration of c-quarks as compared to using perturbative interactions. We also comment on consequences for DD-meson observables in ultra-relativistic heavy-ion collisions.Comment: 14 pages, 5 figures, v2: Added references, v2: Added further references, some typos correcte

    Thermal Dileptons as Fireball Thermometer and Chronometer

    Get PDF
    Thermal dilepton radiation from the hot fireballs created in high-energy heavy-ion collisions provides unique insights into the properties of the produced medium. We first show how the predictions of hadronic many-body theory for a melting ρ\rho meson, coupled with QGP emission utilizing a modern lattice-QCD based equation of state, yield a quantitative description of dilepton spectra in heavy-ion collisions at the SPS and the RHIC beam energy scan program. We utilize these results to systematically extract the excess yields and their invariant-mass spectral slopes to predict the excitation function of fireball lifetimes and (early) temperatures, respectively. We thereby demonstrate that future measurements of these quantities can yield unprecedented information on basic fireball properties. Specifically, our predictions quantify the relation between the measured and maximal fireball temperatures, and the proportionality of excess yields and total lifetime. This information can serve as a "caloric" curve to search for a first-order QCD phase transition, and to detect non-monotonous lifetime variations possibly related to critical phenomena.Comment: 4 pages 3 figure
    corecore