10 research outputs found

    Classroom-based physical activity improves children’s math achievement:A randomized controlled trial

    Get PDF
    This RCT investigated the effect on children of integrating physical activity (PA) into math lessons. The primary outcome was math achievement and the secondary outcomes were executive functions, fitness and body mass index. Twelve Danish schools were randomized to either an intervention group or a control group. A total of 505 children with mean age 7.2 ± 0.3 years were enrolled in the study. Change in math achievement was measured by a 45-minute standardized math test, change in executive function by a modified Eriksen flanker task, aerobic fitness by the Andersen intermittent shuttle-run test, and body mass index by standard procedures. PA during the math lessons and total PA (including time spent outside school) were assessed using accelerometry (ActiGraph, GT3X and GT3X+). Children in the intervention group improved their math score by 1.2 (95% CI 0.3; 2.1) more than the control group (p = 0.011) and had a tendency towards a higher change in physical activity level during math lessons of 120,4 counts/min (95% CI -9.0;249.8.2, p = 0.067). However, the intervention did not affect executive functions, fitness or body mass index. Participation in a 9-month PA intervention (from 2012–2013) improved math achievement among elementary school children. If replicated, these findings would suggest that implementation of physical activity in school settings could lead to higher academic achievement.</div

    Rationale and design of a randomized controlled trial examining the effect of classroom-based physical activity on math achievement

    Get PDF
    Abstract Background Integration of physical activity (PA) into the classroom may be an effective way of promoting the learning and academic achievement of children at elementary school. This paper describes the research design and methodology of an intervention study examining the effect of classroom-based PA on mathematical achievement, creativity, executive function, body mass index and aerobic fitness. Methods The study was designed as a school-based cluster-randomized controlled trial targeting schoolchildren in 1st grade, and was carried out between August 2012 and June 2013. Eligible schools in two municipalities in the Region of Southern Denmark were invited to participate in the study. After stratification by municipality, twelve schools were randomized to either an intervention group or a control group, comprising a total of 505 children with mean age 7.2 ± 0.3 years. The intervention was a 9-month classroom-based PA program that involved integration of PA into the math lessons delivered by the schools’ math teachers. The primary study outcome was change in math achievement, measured by a 45-minute standardized math test. Secondary outcomes were change in executive function (using a modified Eriksen flanker task and the Behavior Rating Inventory of Executive Function (BRIEF) questionnaire filled out by the parents), creativity (using the Torrance Tests of Creative Thinking, TTCT), aerobic fitness (by the Andersen intermittent shuttle-run test) and body mass index. PA during math lessons and total PA (including time spent outside school) were assessed using accelerometry. Math teachers used Short Message Service (SMS)-tracking to report on compliance with the PA intervention and on their motivation for implementing PA in math lessons. Parents used SMS-tracking to register their children’s PA behavior in leisure time. Discussion The results of this randomized controlled trial are expected to provide schools and policy-makers with significant new insights into the potential of classroom-based PA to improve cognition and academic achievement in children. Trial registration Clinicaltrials.gov: NCT02488460 (06/29/2015

    Is metabolic rate a universal ‘pacemaker’ for biological processes?

    No full text

    References

    No full text

    Precision Electroweak Measurements on the Z resonance.

    Get PDF
    We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron–positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward–backward asymmetries and polarised asymmetries. The mass and width of the Z boson, mZ and ΓZ, and its couplings to fermions, for example the ρ parameter and the effective electroweak mixing angle for leptons, are precisely measured: The number of light neutrino species is determined to be 2.9840±0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward–backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, , and the mass of the W boson, . These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of mt and mW, the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than at 95% confidence level

    Precision electroweak measurements on the Z resonance

    No full text
    corecore