3 research outputs found

    Observation of Gravitational Waves from a Binary Black Hole Merger

    No full text

    Transverse momentum spectra of charged particles in proton-proton collisions at 1as=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|\u3b7|<0.8) over the transverse momentum range 0.15<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |\u3b7|<0.8 is \u3008pT\u3009INEL=0.483\ub10.001 (stat.)\ub10.007 (syst.) GeV/c and \u3008pT\u3009NSD=0.489\ub10.001 (stat.)\ub10.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger \u3008pT\u3009 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET. \ua9 2010

    CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions

    No full text
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies sNN=5.5TeV\sqrt{s_{NN}}= 5.5\,{\rm TeV} , will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction \u2014 Quantum Chromodynamics (QCD) \u2014 in extreme conditions of temperature, density and parton momentum fraction (low- x ). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low p T inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high p T hadrons which yield "tomographic" information of the hottest and densest phases of the reaction
    corecore