3,703 research outputs found

    Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    Get PDF
    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots

    Laws of large numbers and Langevin approximations for stochastic neural field equations

    Full text link
    In this study we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson-Cowan equation can be obtained as the limit in probability on compacts for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. Though the latter divergence is not necessary. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably rescaled, converges to a centered Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the Chemical Langevin Equation in the present setting. On a technical level we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces and by this are able to incorporate spatial structures of the underlying model.Comment: 38 page

    Large Deviations for Nonlocal Stochastic Neural Fields

    Get PDF
    We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a QQ-Wiener process and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers' law for neural fields poses substanial difficulties but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multi-scale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations.Comment: 29 page

    Two-Dimensional Lattice Gravity as a Spin System

    Full text link
    Quantum gravity is studied in the path integral formulation applying the Regge calculus. Restricting the quadratic link lengths of the originally triangular lattice the path integral can be transformed to the partition function of a spin system with higher couplings on a Kagome lattice. Various measures acting as external field are considered. Extensions to matter fields and higher dimensions are discussed.Comment: 3 pages, uuencoded postscript file; Proceedings of the 2nd IMACS Conference on Computational Physics, St. Louis, Oct. 199
    corecore