3,255 research outputs found

    Custom, Normative Practice, and the Law

    Get PDF
    Legally binding custom is conventionally analyzed in terms of two independent elements: regularities of behavior (usus) and convictions of actors engaging in the behavior that it is legally required (opinio juris). This additive conception of custom is deeply flawed. This Essay argues that we must abandon the additive conception and replace it with an account of custom that understands legally relevant customs as norms that arise from discursive normative practices embedded in rich contexts of social interaction characterized by intermeshing anticipations and interconnected conduct. The hallmark of legally binding customs, it is argued, is not the addition of belief or conviction to behavior, but rather the integration of meaningful conduct into a web of legally recognized reasons and arguments

    Ultrasound-induced Gas Release from Contrast Agent Microbubbles

    Get PDF
    We investigated gas release from two hard-shelled ultrasound contrast agents by subjecting them to high-mechanical index (MI) ultrasound and simultaneously capturing high-speed photographs. At an insonifying frequency of 1.7 MHz, a larger percentage of contrast bubbles is seen to crack than at 0.5 MHz. Most of the released gas bubbles have equilibrium diameters between 1.25 and 1.75 /spl mu/m. Their disappearance was observed optically. Free gas bubbles have equilibrium diameters smaller than the bubbles from which they have been released. Coalescence may account for the long dissolution times acoustically observed and published in previous studies. After sonic cracking, the cracked bubbles stay acoustically active

    Custom, Normative Practice, and the Law

    Get PDF
    Legally binding custom is conventionally analyzed in terms of two independent elements: regularities of behavior (usus) and convictions of actors engaging in the behavior that it is legally required (opinio juris). This additive conception of custom is deeply flawed. This Essay argues that we must abandon the additive conception and replace it with an account of custom that understands legally relevant customs as norms that arise from discursive normative practices embedded in rich contexts of social interaction characterized by intermeshing anticipations and interconnected conduct. The hallmark of legally binding customs, it is argued, is not the addition of belief or conviction to behavior, but rather the integration of meaningful conduct into a web of legally recognized reasons and arguments

    Ultrasonic motion analysis system - measurement of temporal and spatial gait parameters

    Get PDF
    The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the propagation delay of sound when transmitted in air, this system is able to record the position of the subjects' feet. A small ultrasonic receiver is attached to both shoes of the subject while a transmitter is placed stationary on the floor. Four healthy subjects were used to test the device. Subtracting positions of the foot with zero velocity yielded step and stride length. The duration of stance and swing phase was calculated from heel-strike and toe-off. Comparison with data obtained from foot contact switches showed that applying two relative thresholds to the speed graph of the foot could reliably generate heel-strike and toe-off. Although the device is tested on healthy subjects in this study, it promises to be extremely valuable in examining pathological gait. When gait is asymmetrical, walking speed is not constant or when patients do not completely lift their feet, most existing devices will fail to correctly assess the proper gait parameters. Our device does not have this shortcoming and it will accurately demonstrate asymmetries and variations in the patient's gait. As an example, the recording of a left hemiplegic patient is presented in the discussion. (C) 2002 Elsevier Science Ltd. All rights reserved

    Evaluating load balancing policies for performance and energy-efficiency

    Get PDF
    Nowadays, more and more increasingly hard computations are performed in challenging fields like weather forecasting, oil and gas exploration, and cryptanalysis. Many of such computations can be implemented using a computer cluster with a large number of servers. Incoming computation requests are then, via a so-called load balancing policy, distributed over the servers to ensure optimal performance. Additionally, being able to switch-off some servers during low period of workload, gives potential to reduced energy consumption. Therefore, load balancing forms, albeit indirectly, a trade-off between performance and energy consumption. In this paper, we introduce a syntax for load-balancing policies to dynamically select a server for each request based on relevant criteria, including the number of jobs queued in servers, power states of servers, and transition delays between power states of servers. To evaluate many policies, we implement two load balancers in: (i) iDSL, a language and tool-chain for evaluating service-oriented systems, and (ii) a simulation framework in AnyLogic. Both implementations are successfully validated by comparison of the results.Comment: In Proceedings QAPL'16, arXiv:1610.0769

    Predictions of angle dependent tortuosity and elasticity effects on sound propagation in cancellous bone

    Get PDF
    The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities
    corecore