96 research outputs found

    Artistic occupations are associated with a reduced risk of Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is preceded by a premotor phase of unknown duration. Dopaminergic degeneration during this phase may lead to subtle cognitive and behavioural changes, such as decreased novelty seeking. Consequently, premotor subjects might be most comfortable in jobs that do not require optimal dopamine levels, leading to an overrepresentation in structured and predictable occupations, or an underrepresentation in artistic occupations. In a case–control study, 750 men with PD (onset ≥40 years) and 1300 healthy men completed a validated questionnaire about their lifetime occupational status. Occupations were classified using the RIASEC model. Odds ratios (ORs) were calculated for the conventional and artistic categories, both for the most recent occupation before symptom onset, and for the very first occupation. Because farming has been associated with a PD risk, ORs were calculated separately for farming. A reduced risk of PD was found for men with an artistic occupation late in life (OR 0.14, 95 % CI 0.04–0.53), while an artistic first occupation did not prevent PD (OR 0.72, CI 0.32–1.59). Conventional occupations showed no increased risk (recent: OR 1.07, CI 0.70–1.64; first: OR 1.14, CI 0.77–1.71). In support of previous reports, farming was associated with an increased risk of PD (recent: OR 2.6, CI 1.4–4.6; first: OR 2.7, CI 1.6–4.5). PD patients were older than controls, but various statistical corrections for age all lead to similar results. Artistic occupations late in life are associated with a reduced risk of subsequent PD, perhaps because this reflects a better preserved dopaminergic state. No initial occupation predicted PD, suggesting that the premotor phase starts later in life

    Classical Yang-Mills Black hole hair in anti-de Sitter space

    Get PDF
    The properties of hairy black holes in Einstein–Yang–Mills (EYM) theory are reviewed, focusing on spherically symmetric solutions. In particular, in asymptotically anti-de Sitter space (adS) stable black hole hair is known to exist for frak su(2) EYM. We review recent work in which it is shown that stable hair also exists in frak su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair a black hole in adS can possess

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Study of W boson production in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    A measurement is presented of W-boson production in PbPb collisions carried out at a nucleon-nucleon (NN) centre-of-mass energy sqrt(s[NN]) of 2.76 TeV at the LHC using the CMS detector. In data corresponding to an integrated luminosity of 7.3 inverse microbarns, the number of W to mu mu-neutrino decays is extracted in the region of muon pseudorapidity abs(eta[mu])<2.1 and transverse momentum pt[mu]>25 GeV. Yields of muons found per unit of pseudorapidity correspond to (159 +/- 10 (stat.) +/- 12 (syst.)) 10E-8 W(plus) and (154 +/- 10 (stat.) +/- 12 (syst.)) 10E-8 W(minus) bosons per minimum-bias PbPb collision. The dependence of W production on the centrality of PbPb collisions is consistent with a scaling of the yield by the number of incoherent NN collisions. The yield of W bosons is also studied in a sample of pp interactions at sqrt(s)= 2.76 TeV corresponding to an integrated luminosity of 231 inverse nanobarns. The individual W(plus) and W(minus) yields in PbPb and pp collisions are found to agree, once the neutron and proton content in Pb nuclei is taken into account. Likewise, the difference observed in the dependence of the positive and negative muon production on pseudorapidity is consistent with next-to-leading order perturbative QCD calculations.Comment: Submitted to Physics Letters
    corecore