90 research outputs found

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from 50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing

    Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta pt = 35-150 GeV/c in proton-proton collisions at sqrt(s) = 7 TeV by the CMS experiment at the LHC. Forward jets are measured within pseudorapidities 3.2<|eta|<4.7, and central jets within the |eta|<2.8 range. The double differential cross sections with respect to pt and eta are compared to predictions from three approaches in perturbative quantum chromodynamics: (i) next-to-leading-order calculations obtained with and without matching to parton-shower Monte Carlo simulations, (ii) PYTHIA and HERWIG parton-shower event generators with different tunes of parameters, and (iii) CASCADE and HEJ models, including different non-collinear corrections to standard single-parton radiation. The single-jet inclusive forward jet spectrum is well described by all models, but not all predictions are consistent with the spectra observed for the forward-central dijet events.Comment: Submitted to the Journal of High Energy Physic

    Measurement of the t-channel single-top-quark production cross section and of the |Vtb| CKM matrix element in pp collisions at SQR = 8 TeV

    Get PDF
    Measurements are presented of the t -channel single-top-quark production cross section in proton-proton collisions at s&#8730; = 8 TeV. The results are based on a data sample corresponding to an integrated luminosity of 19.7 fb &#8722;1 recorded with the CMS detector at the LHC. The cross section is measured inclusively, as well as separately for top (t) and antitop (tÂŻ) , in final states with a muon or an electron. The measured inclusive t -channel cross section is &#963; t -ch. = 83 . 6 Âą 2 . 3 (stat.) Âą 7 . 4 (syst.) pb. The single t and tÂŻ cross sections are measured to be &#963; t -ch. ( t ) = 53 . 8 Âą 1 . 5 (stat.) Âą 4 . 4 (syst.) pb and &#963; t -ch. (tÂŻ) = 27 . 6 Âą 1 . 3 (stat.) Âą 3 . 7 (syst.) pb, respectively. The measured ratio of cross sections is R t -ch. = &#963; t -ch. (t) /&#963; t -ch. (tÂŻ) = 1 . 95 Âą 0 . 10 (stat.) Âą 0 . 19 (syst.), in agreement with the standard model prediction. The modulus of the Cabibbo-Kobayashi-Maskawa matrix element V tb is extracted and, in combination with a previous CMS result at s&#8730; = 7 TeV, a value | V tb | = 0 . 998 Âą 0 . 038 (exp.) Âą 0 . 016 (theo.) is obtained

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV

    Get PDF
    The ttÂŻ charge asymmetry in proton-proton collisions at s&#8730; = 7 TeV is measured using the dilepton decay channel (ee, e &#956; , or &#956;&#956; ). The data correspond to a total integrated luminosity of 5.0 fb &#8722;1 , collected by the CMS experiment at the LHC. The tt and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A C = &#8722;0 . 010 Âą 0 . 017 (stat . ) Âą 0 . 008 (syst . ) and AlepC = 0 . 009 Âą 0 . 010 (stat . ) Âą 0 . 006 (syst . ). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the ttÂŻ system. All measurements are consistent with the expectations of the standard model

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance study of the CMS barrel resistive plate chambers with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPIn October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore