309 research outputs found

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Measurements of Higgs bosons decaying to bottom quarks from vector boson fusion production with the ATLAS experiment at √=13TeV

    Get PDF
    The paper presents a measurement of the Standard Model Higgs Boson decaying to b-quark pairs in the vector boson fusion (VBF) production mode. A sample corresponding to 126 fb−1 of s√=13TeV proton–proton collision data, collected with the ATLAS experiment at the Large Hadron Collider, is analyzed utilizing an adversarial neural network for event classification. The signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model for VBF Higgs production, is measured to be 0.95+0.38−0.36 , corresponding to an observed (expected) significance of 2.6 (2.8) standard deviations from the background only hypothesis. The results are additionally combined with an analysis of Higgs bosons decaying to b-quarks, produced via VBF in association with a photon

    Search for dark matter at √s=13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector

    Get PDF
    Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750–1200 GeV for dark-matter candidate masses below 230–480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale M∗ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to Zγ and the Z boson subsequently decays into neutrinos

    Measurement of W+W− production in association with one jet in proton–proton collisions at sqrt(s) = 8TeV with the ATLAS detector

    Get PDF
    The production of W boson pairs in association with one jet in pp collisions at View the MathML sources=8 TeV is studied using data corresponding to an integrated luminosity of 20.3 fb−1 collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of |η|<4.5|η|<4.5. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be View the MathML sourceσWWfid,1-jet=136±6(stat)±14(syst)±3(lumi) fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of WW production with zero or one jet is measured to be View the MathML sourceσWWfid,≤1-jet=511±9(stat)±26(syst)±10(lumi) fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be 0.36±0.050.36±0.05. Finally, a total cross section extrapolated from the fiducial measurement of WW production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement

    Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    Get PDF
    A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5  fb[superscript −1] of proton-proton collisions data at √s=7  TeV and 20.3  fb[superscript −1] at √s=8  TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ=1.17±0.27 at the value of the Higgs boson mass measured by ATLAS, m[subscript H]=125.4  GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m[subscript H]. They are found to be μ[subscript ggF]=1.32±0.38, μ[subscript VBF]=0.8±0.7, μ[subscript WH]=1.0±1.6, μ[subscript ZH]=0.1[superscript +3.7 subscript −0.1], and μ[subscript t [bar over t] H] =1.6[superscript +2.7 subscript −1.8], for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.European Organization for Nuclear ResearchUnited States. Dept. of EnergyNational Science Foundation (U.S.)Brookhaven National Laborator

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2

    Get PDF
    The design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-2018 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb(-1), 46.9 fb(-1), and 60.6 fb(-1) respectively of proton-proton collision data at a centre-of-mass energy of 13TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and b-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme

    Measurement of the transverse polarization of Λ and Λ¯ hyperons produced in proton-proton collisions at √s=7  TeV using the ATLAS detector

    Get PDF
    The transverse polarization of Λ and Λ¯ hyperons produced in proton-proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760  μb−1 of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman xF from 5×10−5 to 0.01 and transverse momentum pT from 0.8 to 15 GeV is −0.010±0.005(stat)±0.004(syst) for Λ and 0.002±0.006(stat)±0.004(syst) for Λ¯. It is also measured as a function of xF and pT, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the xF range covered by this measurement
    corecore