71 research outputs found

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Study of W boson production in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    A measurement is presented of W-boson production in PbPb collisions carried out at a nucleon-nucleon (NN) centre-of-mass energy sqrt(s[NN]) of 2.76 TeV at the LHC using the CMS detector. In data corresponding to an integrated luminosity of 7.3 inverse microbarns, the number of W to mu mu-neutrino decays is extracted in the region of muon pseudorapidity abs(eta[mu])<2.1 and transverse momentum pt[mu]>25 GeV. Yields of muons found per unit of pseudorapidity correspond to (159 +/- 10 (stat.) +/- 12 (syst.)) 10E-8 W(plus) and (154 +/- 10 (stat.) +/- 12 (syst.)) 10E-8 W(minus) bosons per minimum-bias PbPb collision. The dependence of W production on the centrality of PbPb collisions is consistent with a scaling of the yield by the number of incoherent NN collisions. The yield of W bosons is also studied in a sample of pp interactions at sqrt(s)= 2.76 TeV corresponding to an integrated luminosity of 231 inverse nanobarns. The individual W(plus) and W(minus) yields in PbPb and pp collisions are found to agree, once the neutron and proton content in Pb nuclei is taken into account. Likewise, the difference observed in the dependence of the positive and negative muon production on pseudorapidity is consistent with next-to-leading order perturbative QCD calculations.Comment: Submitted to Physics Letters

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    Get PDF
    This is the pre-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2010 ElsevierWe present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments

    Observation of a new Xi(b) baryon

    Get PDF
    The first observation of a new b baryon via its strong decay into Xi(b)^- pi^+ (plus charge conjugates) is reported. The measurement uses a data sample of pp collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3 inverse femtobarns. The known Xi(b)^- baryon is reconstructed via the decay chain Xi(b)^- to J/psi Xi^- to mu^+ mu^- Lambda^0 pi^-, with Lambda^0 to p pi^-. A peak is observed in the distribution of the difference between the mass of the Xi(b)^- pi^+ system and the sum of the masses of the Xi(b)^- and pi^+, with a significance exceeding five standard deviations. The mass difference of the peak is 14.84 +/- 0.74 (stat.) +/- 0.28 (syst.) MeV. The new state most likely corresponds to the J^P=3/2^+ companion of the Xi(b).Comment: Submitted to Physical Review Letter
    corecore