18 research outputs found

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Multiplayer game backends: A Comparison of commodity cloud-based approaches

    No full text
    The development of resource-intensive complex distributed systems such as the backend side of Massively Multiplayer Online Games (MMOGs) has shifted towards cloud-based approaches in recent years. Despite this shift, researchers and developers have mostly utilized proprietary clouds to provide services for such applications — thus leaving the area of commodity clouds largely unexplored. The use of proprietary clouds is almost always applied at the Infrastructure-as-a-Service layer, thereby enforcing restrictions on the development of MMOGs. In a previous work we focused on the characteristics of MMOGs, outlining certain factors that prohibit their deployment on commodity clouds. In this paper, we evaluate the suitability of common public cloud platforms in developing and deploying the backend side of MMOGs. In our approach, we implement a simple MMOG over three popular public cloud platforms. Then, we evaluate their performance by measuring the latency of the game over each platform as well as the maximum size of game worlds supported by each approach. Our measurements show that approaches based on the Infrastructure-as-a-Service layer perform better than those based on the Platform-as-a-Service layer — which was expected. However, our results indicate that MMOGs based on the Platform-as-aService layer can also perform relatively well and within the bounds of real-time latency. Coupled with accelerated development and lower maintenance costs, Platform-as-a-Service technology paves the way for further development of MMOG specific Backend-as-a-Service platforms

    Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo

    No full text
    BACKGROUND: Cardiovascular (CV) disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Furthermore, patients with T2DM and acute coronary syndrome (ACS) have a particularly high risk of CV events. The glucagon-like peptide 1 receptor agonist, lixisenatide, improves glycemia, but its effects on CV events have not been thoroughly evaluated. METHODS: ELIXA (www.clinicaltrials.gov no. NCT01147250) is a randomized, double-blind, placebo-controlled, parallel-group, multicenter study of lixisenatide in patients with T2DM and a recent ACS event. The primary aim is to evaluate the effects of lixisenatide on CV morbidity and mortality in a population at high CV risk. The primary efficacy end point is a composite of time to CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. Data are systematically collected for safety outcomes, including hypoglycemia, pancreatitis, and malignancy. RESULTS: Enrollment began in July 2010 and ended in August 2013; 6,068 patients from 49 countries were randomized. Of these, 69% are men and 75% are white; at baseline, the mean ± SD age was 60.3 ± 9.7 years, body mass index was 30.2 ± 5.7 kg/m(2), and duration of T2DM was 9.3 ± 8.2 years. The qualifying ACS was a myocardial infarction in 83% and unstable angina in 17%. The study will continue until the positive adjudication of the protocol-specified number of primary CV events. CONCLUSION: ELIXA will be the first trial to report the safety and efficacy of a glucagon-like peptide 1 receptor agonist in people with T2DM and high CV event risk

    Observation of Gravitational Waves from a Binary Black Hole Merger

    No full text

    CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions

    No full text
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies sNN=5.5TeV\sqrt{s_{NN}}= 5.5\,{\rm TeV} , will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction \u2014 Quantum Chromodynamics (QCD) \u2014 in extreme conditions of temperature, density and parton momentum fraction (low- x ). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low p T inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high p T hadrons which yield "tomographic" information of the hottest and densest phases of the reaction

    A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    No full text
    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W+, W-, and Z 0 bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 x 106. The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle

    A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    Get PDF
    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W+, W-, and Z(0) bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 x 10(6). The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle
    corecore