GSI Helmholtz Centre for Heavy Ion Research

GSI Repository
Not a member yet
    145222 research outputs found

    Focus stacking single-event particle radiography for high spatial resolution images and 3D feature localization.

    No full text
    Objective.We demonstrate a novel focus stacking technique to improve spatial resolution of single-event particle radiography (pRad), and exploit its potential for 3D feature detection.Approach.Focus stacking, used typically in optical photography and microscopy, is a technique to combine multiple images with different focal depths into a single super-resolution image. Each pixel in the final image is chosen from the image with the largest gradient at that pixel's position. pRad data can be reconstructed at different depths in the patient based on an estimate of each particle's trajectory (called distance-driven binning; DDB). For a given feature, there is a depth of reconstruction for which the spatial resolution of DDB is maximal. Focus stacking can hence be applied to a series of DDB images reconstructed from a single pRad acquisition for different depths, yielding both a high-resolution projection and information on the features' radiological depth at the same time. We demonstrate this technique with Geant4 simulated pRads of a water phantom (20 cm thick) with five bone cube inserts at different depths (1 × 1 × 1 cm3) and a lung cancer patient.Main results.For proton radiography of the cube phantom, focus stacking achieved a median resolution improvement of 136% compared to a state-of-the-art maximum likelihood pRad reconstruction algorithm and a median of 28% compared to DDB where the reconstruction depth was the center of each cube. For the lung patient, resolution was visually improved, without loss in accuracy. The focus stacking method also enabled to estimate the depth of the cubes within few millimeters accuracy, except for one shallow cube, where the depth was underestimated by 2.5 cm.Significance.Focus stacking utilizes the inherent 3D information encoded in pRad by the particle's scattering, overcoming current spatial resolution limits. It further opens possibilities for 3D feature localization. Therefore, focus stacking holds great potential for future pRad applications

    Dense nuclear matter equation of state from heavy-ion collisions

    No full text

    Measurement of the low-energy antitriton inelastic cross section

    No full text
    In this Letter, the first measurement of the inelastic cross section for antitriton–nucleus interactions is reported, covering the momentum range of 0.8≤p<2.4GeV/c. The measurement is carried out using data recorded with the ALICE detector in pp and Pb–Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the Image 1 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to A=3 carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter


    full texts


    metadata records
    Updated in last 30 days.
    GSI Repository is based in Germany
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇