HAL Mines Nantes
Not a member yet
    7097 research outputs found

    First measurements with a new β\beta-electron detector for spectral shape studies

    No full text
    International audienceThe shape of the spectrum corresponding to the electrons emitted in β\beta decay carries a wealth of information about nuclear structure and fundamental physics. In spite of that, few dedicated measurements have been made of β\beta-spectrum shapes. In this work we present a newly developed detector for β\beta electrons based on a telescope concept. A thick plastic scintillator is employed in coincidence with a thin silicon detector. First measurements employing this detector have been carried out with mono-energetic electrons from the high-energy resolution electron-beam spectrometer at Bordeaux. Here we report on the good reproduction of the experimental spectra of mono-energetic electrons using Monte Carlo simulations. This is a crucial step for future experiments, where a detailed Monte Carlo characterization of the detector is needed to determine the shape of the β\beta-electron spectra by deconvolution of the measured spectra with the response function of the detector. A chamber to contain two telescope assemblies has been designed for future β\beta-decay experiments at the Ion Guide Isotope Separator On-Line facility in Jyväskylä, aimed at improving our understanding of reactor antineutrino spectra

    SUBA-Jet: a new Model for Jets in Heavy Ion Collisions

    No full text
    International audienceWe present a new model for jet quenching in a quark gluon plasma (QGP). The jet energy loss has two steps. The initial jet parton with a high virtuality loses energy by a perturbative vacuum parton shower modified by medium interactions until it becomes on shell. Subsequent energy loss originates from elastic and radiative collisions with the medium constituents. Coherency of the radiative collisions is achieved by starting with virtual gluons that act as field dressing of the initial jet parton. These are formed according to a Gunion-Bertsch seed. The QCD version of the LPM effect is obtained by increasing the phase of the virtual gluons through elastic scatterings with the medium. Above a phase threshold, the virtual gluons will be formed and can produce coherent radiation themselves. The model has been implemented in a Monte Carlo code and is validated by successfully reproducing the BDMPS-Z prediction for the energy spectrum of radiated gluons in a static medium. Results for the more realistic case, in which the assumptions of the BDMPS-Z approach are released, are also shown. We investigate the influence of various parameters on the energy spectrum and the transverse momentum distribution, such as the in-medium quark masses, the energy transfer in the recoil process, and the phase accumulation criteria, especially for low and intermediate energy gluons

    Methodology for small animals targeted irradiations at conventional and ultra-high dose rates 65 MeV proton beam

    No full text
    International audienceAs part of translational research projects, mice may be irradiated on radiobiology platforms such as the one at the ARRONAX cyclotron. Generally, these platforms do not feature an integrated imaging system. Moreover, in the context of ultra-high dose-rate radiotherapy (FLASH-RT), treatment planning should consider potential changes in the beam characteristics and internal movements in the animal. A patient-like set-up and methodology has been implemented to ensure target coverage during conformal irradiations of the brain, lungs and intestines. In addition, respiratory cycle amplitudes were quantified by fluoroscopic acquisitions on a mouse, to ensure organ coverage and to assess the impact of respiration during FLASH-RT using the 4D digital phantom MOBY. Furthermore, beam incidence direction was studied from mice µCBCT and Monte Carlo simulations. Finally,in vivo dosimetry with dose-rate independent radiochromic films (OC-1) and their LET dependency were investigated. The immobilization system ensures that the animal is held in a safe and suitable position. The geometrical evaluation of organ coverage, after the addition of the margins around the organs, was satisfactory. Moreover, no measured differences were found between CONV and FLASH beams enabling a single model of the beamline for all planning studies. Finally, the LET-dependency of the OC-1 film was determined and experimentally verified with phantoms, as well as the feasibility of using these filmsin vivoto validate the targeting. The methodology developed ensures accurate and reproducible preclinical irradiations in CONV and FLASH-RT without in-room image guidance in terms of positioning, dose calculation and in vivo dosimetry

    Longitudinal ternary fission

    No full text
    International audienceThe longitudinal ternary fission is studied using the generalized liquid drop model. The proximity energy and the charge and mass asymmetries are taken into account. Spherical parent and daughter nuclei are considered. The shape sequence selected to simulate the quasimolecular three-body shapes is built from different but connected elliptic half lemniscatoids. The potential barriers are much lower when the central fragment is the smallest one and particularly when it is an α particle. The 2α emission can be described as a particular prolate fission with emission of two particles at the tips of the deformed nucleus. The associated potential barriers are high and thin

    ALICE luminosity determination for Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceLuminosity determination within the ALICE experiment is based on the measurement, in van der Meer scans, of the cross sections for visible processes involving one or more detectors (visible cross sections). In 2015 and 2018, the Large Hadron Collider provided Pb–Pb collisions at a centre-of-mass energy per nucleon pair of √sNN_{NN} = 5.02 TeV. Two visible cross sections, associated with particle detection in the Zero Degree Calorimeter (ZDC) and in the V0 detector, were measured in a van der Meer scan.This article describes the experimental set-up and the analysis procedure, and presents the measurement results. The analysis involves a comprehensive study of beam-related effects and an improved fitting procedure, compared to previous ALICE studies, for the extraction of the visible cross section. The resulting uncertainty of both the ZDC-based and the V0-based luminosity measurement for the full sample is 2.5%. The inelastic cross section for hadronic interactions in Pb–Pb collisions at √sNN_{NN} = 5.02 TeV, obtained by efficiency correction of the V0-based visible cross section, was measured to be 7.67 ± 0.25 b, in agreement with predictions using the Glauber model

    Design and performance of the field cage for the XENONnT experiment

    No full text
    International audienceThe precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to 83mKr{}^{83m}\mathrm{Kr} calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages

    Measurement of inclusive charged-particle jet production in pp and p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceMeasurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and the corresponding nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region ηjet<0.5|\eta_{\rm jet}| < 0.5 from charged particles using the anti-kTk_{\rm T} algorithm with resolution parameters R=0.2R = 0.2, 0.3, and 0.4. The pTp_{\rm T}-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross-section ratios, are reported for pp and p-Pb collisions in the transverse momentum range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc and 10<pT,jetch<16010 < p^{\rm ch}_{\rm T,jet} < 160 GeV/cc, respectively, together with the nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} in the range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc. The analysis extends the pTp_{\rm T} range of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD POWHEG calculations with parton shower provided by PYTHIA8 as well as by JETSCAPE simulations

    Microbially formed Mn(IV) oxide as a novel adsorbent for removal of Radium

    No full text
    International audienceRadioactivity of Ra isotopes in natural waters is of serious concern. Control of 226Ra concentrations in tailings ponds, which store waste from U ore extraction processes, is an important issue in mill tailings management. In this study, we tested microbially formed Mn(IV) oxide as an adsorbent for removal of Ra in water treatment. Biogenic Mn(IV) oxide (BMO) was prepared using a Mn(II)-oxidizing fungus, Coprinopsis urticicola strain Mn-2. First, adsorption experiments of Sr and Ba, as surrogates for Ra, onto BMO were conducted in aqueous NaCl solution at pH 7. Distribution coefficients for Ba and Sr were estimated to be ∼106.5 and ∼104.3 mL/g, respectively. EXAFS analysis indicated that both Sr and Ba adsorbed in inner-sphere complexes on BMO, suggesting that Ra would adsorb in a similar way. From these findings, we expected that BMO would work effectively in removal of Ra from water. Then, BMO was applied to remove Ra from mine water collected from a U mill tailings pond. Just 7.6 mg of BMO removed >98% of the 226Ra from 3 L of mine water, corresponding to a distribution coefficient of 107.4 mL/g for Ra at pH ∼7. The obtained value was convincingly high for practical application of BMO in water treatment. At the same time, the high distribution coefficient indicates that Mn(IV) oxide can be an important carrier and host phase of Ra in the environment

    Studying the interaction between charm and light-flavor mesons

    No full text
    International audienceThe two-particle momentum correlation functions between charm mesons (D±\mathrm{D^{*\pm}} and D±\mathrm{D}^\pm) and charged light-flavor mesons (π±\pi^{\pm} and K±^{\pm}) in all charge-combinations are measured for the first time by the ALICE Collaboration in high-multiplicity proton-proton collisions at a center-of-mass energy of s=13\sqrt{s} =13 TeV. For DK\mathrm{DK} and DK\mathrm{D^*K} pairs, the experimental results are in agreement with theoretical predictions of the residual strong interaction based on quantum chromodynamics calculations on the lattice and chiral effective field theory. In the case of Dπ\mathrm{D}\pi and Dπ\mathrm{D^*}\pi pairs, tension between the calculations including strong interactions and the measurement is observed. For all particle pairs, the data can be adequately described by Coulomb interaction only, indicating a shallow interaction between charm and light-flavor mesons. Finally, the scattering lengths governing the residual strong interaction of the Dπ\mathrm{D}\pi and Dπ\mathrm{D^*}\pi systems are determined by fitting the experimental correlation functions with a model that employs a Gaussian potential. The extracted values are small and compatible with zero

    Transport coefficients for heavy quarks and quarkonia

    No full text
    International audienc

    877

    full texts

    7,097

    metadata records
    Updated in last 30 days.
    HAL Mines Nantes is based in France
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇