95 research outputs found

    Cerebrospinal fluid neurofilament dynamic profiles predict cognitive progression in individuals with de novo Parkinson’s disease

    Get PDF
    BackgroundNeurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) reflects the severity of neurodegeneration, with its altered concentrations discovered in Parkinson’s disease (PD) and Parkinson’s disease dementia (PD-D).ObjectiveTo determine whether CSF NfL, a promising biomarker of neuronal/axonal damage, can be used to monitor cognitive progression in de novo Parkinson’s disease and predict future cognitive decline.MethodsA total of 259 people were recruited in this study, including 85 healthy controls (HC) and 174 neonatal PD patients from the Parkinson’s Progression Markers Initiative (PPMI). Multiple linear regression and linear mixed effects models were used to examine the associations of baseline/longitudinal CSF NfL with cognitive decline and other CSF biomarkers. Kaplan–Meier analysis and log-rank test were used to compare the cumulative probability risk of cognition progression during the follow-up. Multivariate cox regression was used to detect cognitive progression in de novo PD.ResultsWe found PD patients with mild cognitive impairment (PD-MCI) was higher than with normal cognition (PD-NC) in terms of CSF NfL baseline levels (p = 0.003) and longitudinal increase rate (p = 0.034). Both baseline CSF NfL and its rate of change predicted measurable cognitive decline in de novo PD (MoCA, ÎČ = −0.010, p = 0.011; ÎČ = −0.0002, p < 0.001, respectively). The predictive effects in de novo PD patients aged >65, male, ill-educated (<13 years) and without carrying Apolipoprotein E Δ4 (APOE Δ4) seemed to be more obvious and reflected in more domains investigated. We also observed that CSF NfL levels predicted progression in de novo PD patients with different cognitive diagnosis and amyloid status. After an average follow-up of 6.66 ± 2.54 years, higher concentration above the median of baseline CSF NfL was associated with a future high risk of PD with dementia (adjusted HR 2.82, 95% CI: 1.11–7.20, p = 0.030).ConclusionOur results indicated that CSF NfL is a promising prognostic predictor of PD, and its concentration and dynamics can monitor the severity and progression of cognitive decline in de novo PD patients

    Potential interaction between the oral microbiota and COVID-19: a meta-analysis and bioinformatics prediction

    Get PDF
    ObjectivesThe purpose of this study was to evaluate available evidence on the association between the human oral microbiota and coronavirus disease 2019 (COVID-19) and summarize relevant data obtained during the pandemic.MethodsWe searched EMBASE, PubMed, and the Cochrane Library for human studies published up to October 2022. The main outcomes of the study were the differences in the diversity (α and ÎČ) and composition of the oral microbiota at the phylum and genus levels between patients with laboratory-confirmed SARS-CoV-2 infection (CPs) and healthy controls (HCs). We used the Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA) database, Protein−protein interaction (PPI) network (STRING) and Gene enrichment analysis (Metascape) to evaluate the expression of dipeptidyl peptidase 4 (DPP4) (which is the cell receptor of SARS CoV-2) in oral tissues and evaluate its correlation with viral genes or changes in the oral microbiota.ResultsOut of 706 studies, a meta-analysis of 9 studies revealed a significantly lower alpha diversity (Shannon index) in CPs than in HCs (standardized mean difference (SMD): -0.53, 95% confidence intervals (95% CI): -0.97 to -0.09). Subgroup meta-analysis revealed a significantly lower alpha diversity (Shannon index) in older than younger individuals (SMD: -0.54, 95% CI: -0.86 to -0.23/SMD: -0.52, 95% CI: -1.18 to 0.14). At the genus level, the most significant changes were in Streptococcus and Neisseria, which had abundances that were significantly higher and lower in CPs than in HCs based on data obtained from six out of eleven and five out of eleven studies, respectively. DPP4 mRNA expression in the oral salivary gland was significantly lower in elderly individuals than in young individuals. Spearman correlation analysis showed that DPP4 expression was negatively correlated with the expression of viral genes. Gene enrichment analysis showed that DPP4-associated proteins were mainly enriched in biological processes, such as regulation of receptor-mediated endocytosis of viruses by host cells and bacterial invasion of epithelial cells.ConclusionThe oral microbial composition in COVID-19 patients was significantly different from that in healthy individuals, especially among elderly individuals. DPP4 may be related to viral infection and dysbiosis of the oral microbiome in elderly individuals

    Observation of the electromagnetic doubly OZI-suppressed decay J/ψ→ϕπ0J/\psi \rightarrow \phi \pi^{0}

    Get PDF
    Using a sample of 1.311.31 billion J/ψJ/\psi events accumulated with the BESIII detector at the BEPCII collider, we report the observation of the decay J/ψ→ϕπ0J/\psi \rightarrow \phi\pi^{0}, which is the first evidence for a doubly Okubo-Zweig-Iizuka suppressed electromagnetic J/ψJ/\psi decay. A clear structure is observed in the K+K−K^{+} K^{-} mass spectrum around 1.02 GeV/c2c^2, which can be attributed to interference between J/ψ→ϕπ0J/\psi \rightarrow \phi\pi^{0} and J/ψ→K+K−π0J/\psi \rightarrow K^{+}K^{-}\pi^{0} decays. Due to this interference, two possible solutions are found. The corresponding measured values of the branching fraction of J/ψ→ϕπ0J/\psi \to \phi\pi^{0} are [2.94±0.16(stat.)±0.16(syst.)]×10−6[2.94 \pm 0.16\text{(stat.)} \pm 0.16\text{(syst.)}] \times 10^{-6} and [1.24±0.33(stat.)±0.30(syst.)]×10−7[1.24 \pm 0.33\text{(stat.)} \pm 0.30\text{(syst.)}] \times 10^{-7}.Comment: 7 pages, 4 figures, published in Phys. Rev.

    Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previously published reports have described an effective biocontrol agent named <it>Pseudomonas </it>sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of <it>P. aeruginosa</it>, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures.</p> <p>Results</p> <p>The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved <it>P. aeruginosa </it>core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a <it>capB </it>gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other <it>P. aeruginosa </it>strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of <it>P. aeruginosa </it>strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C.</p> <p>Conclusions</p> <p>The <it>P. aeruginosa </it>strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche.</p

    Genome-Wide Association Study in East Asians Identifies Novel Susceptibility Loci for Breast Cancer

    Get PDF
    Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS) in 19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing 690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls. Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in up to 17,423 additional subjects (7,489 cases and 9,934 controls). SNP rs9485372, near the TGF-ÎČ activated kinase (TAB2) gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of 3.8×10−12 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals) were 0.89 (0.85–0.94) and 0.80 (0.75–0.86) for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951 (P = 1.9×10−6 from the combined analysis of all samples), located in intron 5 of the ESR1 gene, and SNP rs7107217 (P = 4.6×10−7), located at 11q24.3, also showed a consistent association in each of the four stages. This study provides strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1), and identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≄6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets

    Replication and Functional Genomic Analyses of the Breast Cancer Susceptibility Locus at 6q25.1 Generalize Its Importance in Women of Chinese, Japanese, and European Ancestry

    Get PDF
    We evaluated the generalizability of a single nucleotide polymorphism (SNP), rs2046210 (A/G allele), associated with breast cancer risk that was initially identified at 6q25.1 in a genome-wide association study conducted among Chinese women. In a pooled analysis of over 31,000 women of East-Asian, European, and African ancestry, we found a positive association for rs2046210 and breast cancer risk in Chinese women [ORs (95%CI)=1.30(1.22–1.38) and 1.64(1.50–1.80) for the AG and AA genotypes, respectively, P for trend = 1.54 × 10−30], Japanese women [ORs (95%CI)=1.31(1.13–1.52) and 1.37(1.06–1.76), P for trend = 2.51 × 10−4], and European-ancestry American women [ORs (95%CI)=1.07(0.99–1.16) and 1.18(1.04–1.34), P for trend = 0.0069]. No association with this SNP, however, was observed in African American women [ORs (95%CI)=0.81(0.63–1.06) and 0.85(0.65–1.11) for the AG and AA genotypes, respectively, P for trend = 0.4027). In vitro functional genomic studies identified a putative functional variant, rs6913578. This SNP is 1,440 bp downstream of rs2046210 and is in high LD with rs2046210 in Chinese (r2=0.91) and European-ancestry (r2=0.83) populations, but not in Africans (r2=0.57). SNP rs6913578 was found to be associated with breast cancer risk in Chinese and European-ancestry American women. After adjusting for rs2046210, the association of rs6913578 with breast cancer risk in African Americans approached borderline significance. Results from this large consortium study confirmed the association of rs2046210 with breast cancer risk among women of Chinese, Japanese, and European ancestry. This association may be explained in part by a putatively functional variant (rs6913578) identified in the region

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    • 

    corecore