157 research outputs found

    Flow-Dependent Mass Transfer May Trigger Endothelial Signaling Cascades

    Get PDF
    It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades

    LV-pIN-KDEL: a novel lentiviral vector demonstrates the morphology, dynamics and continuity of the endoplasmic reticulum in live neurones

    Get PDF
    BACKGROUND The neuronal endoplasmic reticulum (ER) is an extensive, complex endomembrane system, containing Ca2+ pumps, and Ca2+ channels that permit it to act as a dynamic calcium store. Currently, there is controversy over the continuity of the ER in neurones, how this intersects with calcium signalling and the possibility of physical compartmentalisation. Unfortunately, available probes of ER structure such as vital dyes are limited by their membrane specificity. The introduction of ER-targeted GFP plasmids has been a considerable step forward, but these are difficult to express in neurones through conventional transfection approaches. To circumvent such problems we have engineered a novel ER-targeted GFP construct, termed pIN-KDEL, into a 3rd generation replication-defective, self-inactivating lentiviral vector system capable of mediating gene transduction in diverse dividing and post-mitotic mammalian cells, including neurones. RESULTS Following its expression in HEK293 (or COS-7) cells, LV-pIN-KDEL yielded a pattern of fluorescence that co-localised exclusively with the ER marker sec61beta but with no other major organelle. We found no evidence for cytotoxicity and only rarely inclusion body formation. To explore the utility of the probe in resolving the ER in live cells, HEK293 or COS-7 cells were transduced with LV-pIN-KDEL and, after 48 h, imaged directly at intervals from 1 min to several hours. LV-pIN-KDEL fluorescence revealed the endoplasmic reticulum as a tubular lattice structure whose morphology can change markedly within seconds. Although GFP can be phototoxic, the integrity of the cells and ER was retained for several weeks and even after light exposure for periods up to 24 h. Using LV-pIN-KDEL we have imaged the ER in diverse fixed neuronal cultures and, using real-time imaging, found evidence for extensive, dynamic remodelling of the neuronal ER in live hippocampal cultures, brain slices, explants and glia. Finally, through a Fluorescence Loss in Photobleaching (FLIP) approach, continuous irradiation at a single region of interest removed all the fluorescence of LV-pIN-KDEL-transduced nerve cells in explant cultures, thus, providing compelling evidence that in neurons the endoplasmic reticulum is not only dynamic but also continuous. CONCLUSION The lentiviral-based ER-targeted reporter, LV-pIN-KDEL, offers considerable advantages over present systems for defining the architecture of the ER, especially in primary cells such as neurones that are notoriously difficult to transfect. Images and continuous photobleaching experiments of LV-pIN-KDEL-transduced neurones demonstrate that the endoplasmic reticulum is a dynamic structure with a single continuous lumen. The introduction of LV-pIN-KDEL is anticipated to greatly facilitate a real-time visualisation of the structural plasticity and continuous nature of the neuronal ER in healthy and diseased brain tissue

    Angiogenesis and chronic kidney disease

    Get PDF
    The number of patients requiring renal replacement therapy due to end-stage renal disease (ESRD) is increasing worldwide. The prevalence of chronic kidney disease (CKD), and the importance of CKD as a risk factor in development of ESRD and in complicating cardiovascular disease (CVD) have been confirmed. In recent years, the involvement of angiogenesis-related factors in the progression of CKD has been studied, and the potential therapeutic effects on CKD of modulating these factors have been identified. Vascular endothelial growth factor (VEGF)-A, a potent pro-angiogenic factor, is involved in the development of the kidney, in maintenance of the glomerular capillary structure and filtration barrier, and in the renal repair process after injury. VEGF-A is also involved in the development of early diabetic nephropathy, demonstrated by the therapeutic effects of anti-VEGF-A antibody. Angiopoietin (Ang)-1 induces the maturation of newly formed blood vessels, and the therapeutic effects of Ang-1 in diabetic nephropathy have been described. In experimental models of diabetic nephropathy, the therapeutic effects of angiogenesis inhibitors, including angiostatin, endostatin and tumstatin peptides, the isocoumarin NM-3, and vasohibin-1, have been reported

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    CpG binding protein (CFP1) occupies open chromatin regions of active genes, including enhancers and non-CpG islands

    Get PDF
    Additional file 1. Fig. S1: Analysis of CFP1 binding at individual loci and CpG islands (CGIs). (A-B) Analysis of CFP1 binding at the human α-globin locus in expressing and non-expressing cells. (A) Real-Time PCR analysis of immunoprecipitated chromatin using CFP1 antibody in human erythroblasts (red) and B-lymphocytes (blue). The y-axis represents enrichment over the input DNA, normalised to a control sequence in the human 18S gene. The x-axis represents the positions of Taqman probes used. The coding sequence is represented by the three exons (Promoter/Ex1, Ex2, Ex3) of the α-globin genes. 218 and hBact denote control sequences adjacent to the CpG islands of the human LUC7L (218) and ACTB promoters. Error bars correspond to ± 1 SD from at least two independent ChIPs. (B) Real-Time PCR analysis of immunoprecipitated chromatin using the CFP1 antibody indicated in humanised erythroblasts (normal, +MCS-R2 (left) and mutant, MCS-R2 (right). The y-axis represents enrichment over the input DNA, normalised to a control sequence in the mouse GAPDH gene. CpG Act denotes additional control sequence at the CGI of the mouse ACTB gene. The amplicons highlighted in red represent deleted regions in the humanised mice, for which no PCR signal is observed. Error bars correspond to ± 1 SD from at least two independent ChIPs. (C) CFP1 ChIP signal intensity in the top 200 peaks, by antibody and by cell type. Abcam, ab56035 antibody. Roeder, main antibody used in this study. (D) Analysis of CGI (green) and non-CGI (blue) transcription start sites (1-kb window, centred on TSS). Gene symbols shown with CpG content of individual loci in parentheses. Greek letters represent individual globin genes. Fig. S2: Peak overlaps of CFP1 and marks of active and repressed chromatin in transcription start sites (TSSs). Peaks were detected by MACS2. Venn diagrams show that CFP1 peaks within 1-kb of TSSs are strongly associated with H3K4me3 histone mark and poorly associated with H3K27me3 repressive histone mark. Cell types are (A) ERY and (B) EBV. Public data sets: * NCBI GEO GSE36985, ** NCBI GEO GSE50893. Fig. S3: UCSC tracks showing CFP1 and other ChIP signals in gene loci in erythroblasts (ERY) and EBV-transformed B-lymphoblasts (EBV). Hg38 coordinates for multiple genes, CpG islands (CGI, green boxes), and putative regulatory regions (blue boxes) are shown. CFP1 signals are shown in dark reds, inputs in grey, histone H3 signals in blues and open chromatin marks in greens. All ChIP pileups are scaled to 1x coverage genome-wide and shown in a range 0–50, except CFP1 (Roeder) is shown with extended range and H3K27me3 graphs scaled by 2x. (A) Tissue-specific binding of CFP1 to CGI promoters of tissue-specifically expressed genes. Left (chr16), CGI promoters of active genes in alpha globin locus are CFP1-bound in ERY, and unbound in EBV. Flanking regions are included, with known tissue-specific enhancers. Right (chr6), first seven exons of IRF4 locus, active in EBV and inactive in ERY, with CFP1 binding to CGI promoter in EBV only. (B) CGI promoters of housekeeping genes are CFP1 bound and unmarked by H3K27me3. Left (chr7), ACTB locus. Right (chr16), LUC7L locus. (C) CGI promoter of RHBDF1 locus (chr16) has H3K27me3 mark and the absence of CFP1 binding in both ERY and EBV. Fig. S4: Western blot analysis of CGBP (CFP1) expression in mouse and human erythroid and human lymphoid cell types. Whole cell extracts (20 µg) were loaded in each lane (1) mouse ES, (2) U-MEL, (3) I-MEL, (4) mouse primary erythroblasts and (5) human primary T lymphocytes and (6) human primary erythroblasts and separated on a 10% SDS-polyacrylamide gel. CFP1 antibody was used at a 1:1000 dilution. Fig. S5: Similar cell type-specific CFP1 read depth at CGI TSS of HBA1 gene and non-CGI TSS of HBB gene. Upper two tracks use the main antibody, and second two tracks use the commercial antibody. Coordinates are from the hg38 human genome build. Read depths are averaged in 50 bp bins and normalised to 1x genome-wide coverage. Blue boxes, known regulatory regions; green box, CGI. Fig. S6: Distribution of TrxG components in erythroid cells. Green indicates CGI and blue indicates other putative regulatory regions. All loci transcribed right to left. Pileups are shown scaled to 1x genome coverage, with full scale 0–50x depth. (A) Housekeeping genes ACTB, left (chr7), and LUC7L, right (chr16). (B) β-globin locus (chr11), (C) Non-expressed RHBDF1 locus (chr16). Fig. S7: Overlap of TrxG subunit ChIP peaks in a high-confidence subset of regions. SET1A complexes are represented by CFP1-SET1A colocalisation. MLL1/2 complexes are represented by Menin, and MLL3/4 complexes are represented by UTX, respectively. HCF1 is found in SET1A/B and MLL1/2 complexes, and RBBP5 is a member of SET1A/B and MLL1/2/3/4 complexes. Red outline (4220 peaks) shows strong colocalisation of Menin and CFP1-SET1A, accounting for the vast majority (99.5%) of 4242 CFP1-SET1A and half (50.0%) of 8432 Menin peak regions. Majority (87.0%, 2089/2400 peaks) of HCF1 (blue region) is accounted for by approximately half (49.5%, 2089/4220) of regions of Menin-SET1A-CFP1 colocalisation. Regions where either SET1A-CFP1 or Menin or both are colocalised with HCF1 (blue dashed line) accounts for nearly all (99.6%, 2390/2400) HCF1 regions, suggesting that HCF1 bound to DNA is primarily present as part of SET1A/B or MLL1/2 complexes. Fig. S8: Chromatin accessibility in TSSs and enhancers in erythroid cells as measured by ATAC-seq and DNase-seq. 1x-normalised, input-subtracted signals from ATAC-seq and DNase were averaged in a 2-kb window about TSSs and putative enhancers. Z-score transformed values for ATAC-seq and DNase-seq at a given locus were averaged. Fig. S9: Relationship of CFP1 signal to three predictive factors in top-decile open chromatin regions. A linear combination of CpG density and SET1A and H3K4me3 ChIP signals explains a substantial fraction of variation in CFP1 ChIP signal. Table S1: Bias of CFP1 for CGI TSSs in cell types and gene classes. Table S2: Bias of CFP1 for housekeeping gene TSSs. Table S3: Motifs associated with CFP1 peaks. Table S4: Dependence of CFP1 ChIP signal in erythroid cells on covariates putatively associated with its binding. Table S5: Analysis of variance of CFP1 signal in top-decile open chromatin regions surrounding TSSs and putative enhancers

    A century of trends in adult human height

    Get PDF

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background: Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories.Methods: We used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age.Findings: The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran.Interpretation: Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings.Copyright (C) 2021 World Health Organization; licensee Elsevier.</p

    Surge analysis of induction heating power supply with PLL

    No full text
    corecore