45 research outputs found

    Characterization and outcomes of 414 patients with primary SS who developed haematological malignancies

    Get PDF
    Objective: To characterize 414 patients with primary SS who developed haematological malignancies and to analyse how the main SS- and lymphoma-related features can modify the presentation patterns and outcomes. Methods: By January 2021, the Big Data Sjögren Project Consortium database included 11 966 patients fulfilling the 2002/2016 classification criteria. Haematological malignancies diagnosed according to the World Health Organization (WHO) classification were retrospectively identified. Results: There were 414 patients (355 women, mean age 57 years) with haematological malignancies (in 43, malignancy preceded at least one year the SS diagnosis). A total of 376 (91%) patients had mature B-cell malignancy, nearly half had extranodal marginal zone lymphoma (MZL) of mucosa-associated lymphoid tissue (MALT lymphoma) (n = 197), followed by diffuse large B-cell lymphoma (DLBCL) (n = 67), nodal MZL lymphoma (n = 29), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) (n = 19) and follicular lymphoma (FL) (n = 17). Rates of complete response, relapses and death were 80%, 34% and 13%, respectively, with a 5-year survival rate of 86.5% after a mean follow-up of 8 years. There were significant differences in age at diagnosis (younger in MALT, older in CLL/SLL), predominant clinical presentation (glandular enlargement in MALT lymphoma, peripheral lymphadenopathy in nodal MZL and FL, constitutional symptoms in DLBCL, incidental diagnosis in CLL/SLL), therapeutic response (higher in MALT lymphoma, lower in DLBCL) and survival (better in MALT, nodal MZL and FL, worse in DLBCL). Conclusion: In the largest reported study of haematological malignancies complicating primary SS, we confirm the overwhelming predominance of B-cell lymphomas, especially MALT, with the salivary glands being the primary site of involvement. This highly-specific histopathological scenario is linked with the overall good prognosis with a 5-year survival rate of nearly 90%

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore