10 research outputs found

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Accelerating complex brain-model simulations on GPU platforms

    No full text
    The Inferior Olive (IO) in the brain, in conjunction with the cerebellum, is responsible for crucial sensorimotor-integration functions in humans. In this paper, we simulate a computationally challenging IO neuron model consisting of three compartments per neuron in a network arrangement on GPU platforms. Several GPU platforms of the two latest NVIDIA GPU architectures (Fermi, Kepler) have been used to simulate large-scale IO-neuron networks. These networks have been ported on 4 diverse GPU platforms and implementation has been optimized, scoring 3x speedups compared to its unoptimized version. The effect of GPU L1-cache and thread block size as well as the impact of numerical precision of the application on performance have been evaluated and best configurations have been chosen. In effect, a maximum speedup of 160x has been achieved with respect to a reference CPU platform

    Search for the associated production of the Higgs boson with a top-quark pair

    No full text

    Search for new physics in events with same-sign dileptons and jets in pp collisions at \sqrts = 8 TeV

    No full text

    Measurement of the t \bart production cross section in the dilepton channel in pp collisions at \sqrts = 8 TeV

    No full text

    Search for Standard Model Production of Four Top Quarks in the Lepton + Jets Channel in pp Collisions at \sqrts = 8 TeV

    No full text

    Measurement of jet multiplicity distributions in \mathrm t\overline\mathrm t production in pp collisions at \sqrts = 7\,\text TeV

    No full text

    CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions

    No full text
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies sNN=5.5TeV\sqrt{s_{NN}}= 5.5\,{\rm TeV} , will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction \u2014 Quantum Chromodynamics (QCD) \u2014 in extreme conditions of temperature, density and parton momentum fraction (low- x ). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low p T inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high p T hadrons which yield "tomographic" information of the hottest and densest phases of the reaction
    corecore