128 research outputs found

    Infrared spectroscopy characterization of normal and lung cancer cells originated from epithelium

    Get PDF
    The vibrational spectral differences of normal and lung cancer cells were studied for the development of effective cancer cell screening by means of attenuated total reflection infrared spectroscopy. The phosphate monoester symmetric stretching νs(PO32-) band intensity at ~970 cm-1 and the phosphodiester symmetric stretching νs(PO2-) band intensity at ~1,085 cm-1 in nucleic acids and phospholipids appeared to be significantly strengthened in lung cancer cells with respect to the other vibrational bands compared to normal cells. This finding suggests that more extensive phosphorylation occur in cancer cells. These results demonstrate that lung cancer cells may be prescreened using infrared spectroscopy tools

    APOE Promoter Polymorphism-219T/G is an Effect Modifier of the Influence of APOE ε4 on Alzheimer's Disease Risk in a Multiracial Sample

    Get PDF
    Variants in the APOE gene region may explain ethnic differences in the association of Alzheimer's disease (AD) with ε4. Ethnic differences in allele frequencies for three APOE region SNPs (single nucleotide polymorphisms) were identified and tested for association in 19,398 East Asians (EastA), including Koreans and Japanese, 15,836 European ancestry (EuroA) individuals, and 4985 African Americans, and with brain imaging measures of cortical atrophy in sub-samples of Koreans and EuroAs. Among ε4/ε4 individuals, AD risk increased substantially in a dose-dependent manner with the number of APOE promoter SNP rs405509 T alleles in EastAs (TT: OR (odds ratio) = 27.02, p = 8.80 × 10-94; GT: OR = 15.87, p = 2.62 × 10-9) and EuroAs (TT: OR = 18.13, p = 2.69 × 10-108; GT: OR = 12.63, p = 3.44 × 10-64), and rs405509-T homozygotes had a younger onset and more severe cortical atrophy than those with G-allele. Functional experiments using APOE promoter fragments demonstrated that TT lowered APOE expression in human brain and serum. The modifying effect of rs405509 genotype explained much of the ethnic variability in the AD/ε4 association, and increasing APOE expression might lower AD risk among ε4 homozygotes

    Constitutive activation of glycogen synthase kinase-3β correlates with better prognosis and cyclin-dependent kinase inhibitors in human gastric cancer

    Get PDF
    Background: Aberrant regulation of glycogen synthase kinase-3 beta (GSK-3 beta) has been implicated in several human cancers; however, it has not been reported in the gastric cancer tissues to date. The present study was performed to determine the expression status of active form of GSK-3 beta phosphorylated at Tyr(216) (pGSK-3 beta) and its relationship with other tumor-associated proteins in human gastric cancers. Methods: Immunohistochemistry was performed on tissue array slides containing 281 human gastric carcinoma specimens. In addition, gastric cancer cells were cultured and treated with a GSK-3 beta inhibitor lithium chloride (LiCl) for immunoblot analysis. Results: We found that pGSK-3 beta was expressed in 129 (46%) of 281 cases examined, and was higher in the early-stages of pathologic tumor-node-metastasis (P < 0.001). The expression of pGSK-3 beta inversely correlated with lymphatic invasion (P < 0.001) and lymph node metastasis (P < 0.001) and correlated with a longer patient survival (P < 0.001). In addition, pGSK-3 beta expression positively correlated with that of p16, p21, p27, p53, APC, PTEN, MGMT, SMAD4, or KAl1 (P < 0.05), but not with that of cyclin D1. This was confirmed by immunoblot analysis using SNU-668 gastric cancer cells treated with LiCl. Conclusions: GSK-3 beta activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis. Thus, these findings suggest that GSK-3 beta activation is a useful prognostic marker for the early-stage gastric cancer.Hirakawa H, 2009, ONCOL REP, V22, P481, DOI 10.3892/or_00000460Dar AA, 2009, ONCOGENE, V28, P866, DOI 10.1038/onc.2008.434Holmes T, 2008, STEM CELLS, V26, P1288, DOI 10.1634/stemcells.2007-0600Wang Q, 2008, CELL DEATH DIFFER, V15, P908, DOI 10.1038/cdd.2008.2Takahashi-Yanaga F, 2008, CELL SIGNAL, V20, P581, DOI 10.1016/j.cellsig.2007.10.018Pan MH, 2007, J AGR FOOD CHEM, V55, P7777, DOI 10.1021/jf071520hShakoori A, 2007, CANCER SCI, V98, P1388, DOI 10.1111/j.1349-7006.2007.00545.xZheng HC, 2007, ANTICANCER RES, V27, P3561Saegusa M, 2007, J PATHOL, V213, P35, DOI 10.1002/path.2198Ma C, 2007, CANCER RES, V67, P7756, DOI 10.1158/0008-5472.CAN-06-4665Forde JE, 2007, CELL MOL LIFE SCI, V64, P1930, DOI 10.1007/s00018-007-7045-7Li YW, 2007, J BIOL CHEM, V282, P21542, DOI 10.1074/jbc.M701978200Ding QQ, 2007, CANCER RES, V67, P4564, DOI 10.1158/0008-5472.CAN-06-1788Kunnimalaiyaan M, 2007, MOL CANCER THER, V6, P1151, DOI 10.1158/1535-7163.MCT-06-0665Soto-Cerrato V, 2007, MOL CANCER THER, V6, P362, DOI 10.1158/1535-7163.MCT-06-0266Cao Q, 2006, CELL RES, V16, P671, DOI 10.1038/sj.cr.7310078Yang CH, 2006, PRECIS AGRIC, V7, P33, DOI 10.1007/s11119-005-6788-0Crew KD, 2006, WORLD J GASTROENTERO, V12, P354Mai W, 2007, ONCOLOGY-BASEL, V71, P297, DOI 10.1159/000106429Tan J, 2005, CANCER RES, V65, P9012, DOI 10.1158/0008-5472.CAN-05-1226Shakoori A, 2005, BIOCHEM BIOPH RES CO, V334, P1365, DOI 10.1016/j.bbrc.2005.07.041Farago M, 2005, CANCER RES, V65, P5792Ghosh JC, 2005, CLIN CANCER RES, V11, P4580Liao XB, 2003, MOL CANCER THER, V2, P1215Lee HS, 2003, J PATHOL, V200, P39, DOI 10.1002/path.1288Doble BW, 2003, J CELL SCI, V116, P1175, DOI 10.1242/jcs.00384Gotoh J, 2003, CARCINOGENESIS, V24, P435Goto H, 2002, ORAL ONCOL, V38, P549Lee HS, 2001, INT J CANCER, V91, P619D`Amico M, 2000, J BIOL CHEM, V275, P32649, DOI 10.1074/jbc.M000643200Endoh Y, 2000, J PATHOL, V191, P257Wu LY, 1998, J NATL MED ASSOC, V90, P410WOODGETT JR, 1984, BIOCHIM BIOPHYS ACTA, V788, P339

    CSF total tau/α-synuclein ratio improved the diagnostic performance for Alzheimers disease as an indicator of tau phosphorylation

    Get PDF
    Abstract Background Recently, several studies suggested potential involvements of α-synuclein in Alzheimers disease (AD) pathophysiology. Higher concentrations of α-synuclein were reported in cerebrospinal fluid (CSF) of AD patients with a positive correlation towards CSF tau, indicating its possible role in AD. We analyzed the CSF biomarkers to verify whether α-synuclein could be an additional supported biomarker in AD diagnosis. Methods In this cross-sectional study, CSF samples of 71 early-onset AD, 34 late-onset AD, 11 mild cognitive impairment, 17 subjective cognitive decline, 45 Parkinsons disease, and 32 healthy control (HC) were collected. CSF amyloid-β1-42 (A), total tau (N), and phosphorylated tau181 (T) were measured by commercial ELISA kits, and in-house ELISA kit was developed to quantify α-synuclein. The cognitive assessments and amyloid-PET imaging were also performed. Results CSF α-synuclein manifested a tendency to increase in AD and to decreased in Parkinsons disease compared to HC. The equilibrium states of total tau and α-synuclein concentrations were changed significantly in AD, and the ratio of total tau/α-synuclein (N/αS) was dramatically increased in AD than HC. Remarkably, N/αS revealed a strong positive correlation with tau phosphorylation rate. Also, the combination of N/αS with amyloid-β1-42/phosphorylated tau181ratio had the best diagnosis performance (AUC = 0.956, sensitivity = 96%, specificity = 87%). In concordance analysis, N/αS showed the higher diagnostic agreement with amyloid-β1-42 and amyloid-PET. Analysis of biomarker profiling with N/αS had distinctive characteristics and clustering of each group. Especially, among the group of suspected non-Alzheimers disease pathophysiology, all A−T+N+ patients with N/αS+ were reintegrated into AD. Conclusions The high correlation of α-synuclein with tau and the elevated N/αS in AD supported the involvement of α-synuclein in AD pathophysiology. Importantly, N/αS improved the diagnostic performance, confirming the needs of incorporating α-synuclein as a biomarker for neurodegenerative disorders. The incorporation of a biomarker group [N/αS] could contribute to provide better understanding and diagnosis of neurodegenerative disorders

    The Biochemical and Cellular Basis for Nutraceutical Strategies to Attenuate Neurodegeneration in Parkinson’s Disease

    Get PDF
    Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible

    3D bioactive composite scaffolds for bone tissue engineering

    Get PDF
    Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world
    corecore