239,497 research outputs found

    Non-axisymmetric relativistic Bondi-Hoyle accretion onto a Schwarzschild black hole

    Get PDF
    We present the results of an exhaustive numerical study of fully relativistic non-axisymmetric Bondi-Hoyle accretion onto a moving Schwarzschild black hole. We have solved the equations of general relativistic hydrodynamics with a high-resolution shock-capturing numerical scheme based on a linearized Riemann solver. The numerical code was previously used to study axisymmetric flow configurations past a Schwarzschild hole. We have analyzed and discussed the flow morphology for a sample of asymptotically high Mach number models. The results of this work reveal that initially asymptotic uniform flows always accrete onto the hole in a stationary way which closely resembles the previous axisymmetric patterns. This is in contrast with some Newtonian numerical studies where violent flip-flop instabilities were found. As discussed in the text, the reason can be found in the initial conditions used in the relativistic regime, as they can not exactly duplicate the previous Newtonian setups where the instability appeared. The dependence of the final solution with the inner boundary condition as well as with the grid resolution has also been studied. Finally, we have computed the accretion rates of mass and linear and angular momentum.Comment: 21 pages, 13 figures, Latex, MNRAS (in press

    Marginal AMP Chain Graphs

    Full text link
    We present a new family of models that is based on graphs that may have undirected, directed and bidirected edges. We name these new models marginal AMP (MAMP) chain graphs because each of them is Markov equivalent to some AMP chain graph under marginalization of some of its nodes. However, MAMP chain graphs do not only subsume AMP chain graphs but also multivariate regression chain graphs. We describe global and pairwise Markov properties for MAMP chain graphs and prove their equivalence for compositional graphoids. We also characterize when two MAMP chain graphs are Markov equivalent. For Gaussian probability distributions, we also show that every MAMP chain graph is Markov equivalent to some directed and acyclic graph with deterministic nodes under marginalization and conditioning on some of its nodes. This is important because it implies that the independence model represented by a MAMP chain graph can be accounted for by some data generating process that is partially observed and has selection bias. Finally, we modify MAMP chain graphs so that they are closed under marginalization for Gaussian probability distributions. This is a desirable feature because it guarantees parsimonious models under marginalization.Comment: Changes from v1 to v2: Discussion section got extended. Changes from v2 to v3: New Sections 3 and 5. Changes from v3 to v4: Example 4 added to discussion section. Changes from v4 to v5: None. Changes from v5 to v6: Some minor and major errors have been corrected. The latter include the definitions of descending route and pairwise separation base, and the proofs of Theorems 5 and

    Non-Abelian gauge potentials in graphene bilayers

    Get PDF
    We study the effect of spatial modulations in the interlayer hopping of graphene bilayers, such as those that arise upon shearing or twisting. We show that their single-particle physics, characterized by charge accumulation and recurrent formation of zero-energy bands as the pattern period L increases, is governed by a non-Abelian gauge potential arising in the low-energy electronic theory due to the coupling between layers. We show that such gauge-type couplings give rise to a potential that, for certain discrete values of L, spatially confines states at zero energy in particular regions of the Moir\'e patterns. We also draw the connection between the recurrence of the flat zero-energy bands and the non-Abelian character of the potential.Comment: 5 pages, 3 figures, published versio

    n-ary algebras: a review with applications

    Get PDF
    This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two entries Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the r\^ole of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity (GJI), and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity (FI). Three-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. Because of this, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations (Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the n-Lie algebra is relaxed, one is led the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose GJI reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the FI and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A_4 model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization.Comment: Invited topical review for JPA Math.Theor. v2: minor changes, references added. 120 pages, 318 reference
    corecore