9 research outputs found

    Association of psychological variables and outcome in tendinopathy: a systematic review

    Get PDF
    Objective Fear, anxiety, depression, distress and catastrophisation are all factors known to affect pain and disability levels. To date, the association of such psychological factors has yet to be established in tendinopathy. Therefore, the purpose of this paper was to determine if psychological variables are associated with tendinopathy and whether any such variables may be associated with pain and disability outcomes in conservative management of tendinopathy. Design A systematic review was undertaken and included studies were appraised for risk of bias using the Newcastle-Ottawa Scale. Owing to heterogeneity of studies, a qualitative synthesis was undertaken. Data sources An electronic search of MEDLINE, CiNAHL, SPORTDiscus, PsycINFO, EMBASE and PsycARTICLES was undertaken from their inception to April 2016. Eligibility criteria for selecting studies Any study design that incorporated psychological measures and clinical outcomes using participants with tendinopathy. Results Ten articles describing nine studies and 1108 participants were included. Conflicting evidence exists regarding the association of anxiety, depression and lateral epicondylalgia (LE). Strong evidence suggests LE is not associated with kinesiophobia. Moderate evidence links catastrophisation and distress with LE. Moderate evidence suggests distress is not associated with rotator cuff tendinopathy, but kinesiophobia and catastrophisation are. Limited evidence suggests patellar tendinopathy is not associated with anxiety or depression and kinesiophobia may be linked with suboptimal outcomes in Achilles tendinopathy. Summary/conclusions Tendinopathy requires an individualised approach to management. Clinicians should consider using validated screening tools for the presence of psychological variables as a part of their holistic management

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning.

    Get PDF
    BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise.

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    Rapid typing of STRs in the human genome by HyBeacon® melting

    No full text
    A new method based on DNA melting has been developed for the rapid analysis of STRs in the human genome. The system is based on homogeneous PCR followed by fluorescence melting analysis and utilises a HyBeacon® probe combined with a PCR primer-blocker oligonucleotide. The use of blockers of different length permits identification of the full range of common D16S539 repeats enabling detection of 99.8% of known alleles. The interrogation of STRs can be carried out on standard genetic analysis platforms and could be applied to other loci to form the basis of a bespoke high-throughput system for use in forensic analysis, particularly as fluorescent genetic analysis platforms are now available for high-resolution melting. This methodology may be suitable for rapid forensic DNA analysis at the point-of-arrest or in a custody suite where it is important to identify an individual from a small group of suspects/detainees

    Rapid detection of diagnostic targets using isothermal amplification and HyBeacon probes – a homogenous system for sequence-specific detection

    No full text
    Isothermal amplification is a rapid, simple alternative to PCR, with amplification commonly detected using fluorescently labelled oligonucleotide probes, intercalating dyes or increased turbidity as a result of magnesium pyrophosphate generation. SNP identification is possible but requires either allele-specific primers or multiple dye-labelled probes, but further downstream processing is often required for allelic identification. Here we demonstrate that modification of common isothermal amplification methods by the addition of HyBeacon probes permits homogeneous sequence detection and discrimination by melting or annealing curve analysis. Furthermore, we demonstrate that isothermal amplification and sequence discrimination is possible directly from a crude sample such as an expressed buccal swab

    Protection for the Amino Group

    No full text
    corecore