1,892 research outputs found

    Evaluating the exact infinitesimal values of area of Sierpinski's carpet and volume of Menger's sponge

    Full text link
    Very often traditional approaches studying dynamics of self-similarity processes are not able to give their quantitative characteristics at infinity and, as a consequence, use limits to overcome this difficulty. For example, it is well know that the limit area of Sierpinski's carpet and volume of Menger's sponge are equal to zero. It is shown in this paper that recently introduced infinite and infinitesimal numbers allow us to use exact expressions instead of limits and to calculate exact infinitesimal values of areas and volumes at various points at infinity even if the chosen moment of the observation is infinitely faraway on the time axis from the starting point. It is interesting that traditional results that can be obtained without the usage of infinite and infinitesimal numbers can be produced just as finite approximations of the new ones

    The Olympic medals ranks, lexicographic ordering and numerical infinities

    Get PDF
    Several ways used to rank countries with respect to medals won during Olympic Games are discussed. In particular, it is shown that the unofficial rank used by the Olympic Committee is the only rank that does not allow one to use a numerical counter for ranking – this rank uses the lexicographic ordering to rank countries: one gold medal is more precious than any number of silver medals and one silver medal is more precious than any number of bronze medals. How can we quantify what do these words, more precious, mean? Can we introduce a counter that for any possible number of medals would allow us to compute a numerical rank of a country using the number of gold, silver, and bronze medals in such a way that the higher resulting number would put the country in the higher position in the rank? Here we show that it is impossible to solve this problem using the positional numeral system with any finite base. Then we demonstrate that this problem can be easily solved by applying numerical computations with recently developed actual infinite numbers. These computations can be done on a new kind of a computer – the recently patented Infinity Computer. Its working software prototype is described briefly and examples of computations are given. It is shown that the new way of counting can be used in all situations where the lexicographic ordering is required

    The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area

    Get PDF
    The Koch snowflake is one of the first fractals that were mathematically described. It is interesting because it has an infinite perimeter in the limit but its limit area is finite. In this paper, a recently proposed computational methodology allowing one to execute numerical computations with infinities and infinitesimals is applied to study the Koch snowflake at infinity. Numerical computations with actual infinite and infinitesimal numbers can be executed on the Infinity Computer being a new supercomputer patented in USA and EU. It is revealed in the paper that at infinity the snowflake is not unique, i.e., different snowflakes can be distinguished for different infinite numbers of steps executed during the process of their generation. It is then shown that for any given infinite number n of steps it becomes possible to calculate the exact infinite number, Nn, of sides of the snowflake, the exact infinitesimal length, Ln, of each side and the exact infinite perimeter, Pn, of the Koch snowflake as the result of multiplication of the infinite Nn by the infinitesimal Ln. It is established that for different infinite n and k the infinite perimeters Pn and Pk are also different and the difference can be infinite. It is shown that the finite areas An and Ak of the snowflakes can be also calculated exactly (up to infinitesimals) for different infinite n and k and the difference An − Ak results to be infinitesimal. Finally, snowflakes constructed starting from different initial conditions are also studied and their quantitative characteristics at infinity are computed

    The difficulty of prime factorization is a consequence of the positional numeral system

    Get PDF
    The importance of the prime factorization problem is very well known (e.g., many security protocols are based on the impossibility of a fast factorization of integers on traditional computers). It is necessary from a number k to establish two primes a and b giving k = a · b. Usually, k is written in a positional numeral system. However, there exists a variety of numeral systems that can be used to represent numbers. Is it true that the prime factorization is difficult in any numeral system? In this paper, a numeral system with partial carrying is described. It is shown that this system contains numerals allowing one to reduce the problem of prime factorization to solving [K/2] − 1 systems of equations, where K is the number of digits in k (the concept of digit in this system is more complex than the traditional one) and [u] is the integer part of u. Thus, it is shown that the difficulty of prime factorization is not in the problem itself but in the fact that the positional numeral system is used traditionally to represent numbers participating in the prime factorization. Obviously, this does not mean that P=NP since it is not known whether it is possible to re-write a number given in the traditional positional numeral system to the new one in a polynomial time
    • …
    corecore