7,908 research outputs found

    Monte-Carlo Study of Bound States in a Few-Nucleon System - Method of Continued Fractions -

    Get PDF
    We propose a new type of Monte-Carlo method which enables us to study the excited state of many-body systems.Comment: ReVTeX: 25 pages, 10 Postscript figures,2 tables, uses epsf.sty:to be published in Prog. Theor. Phys. vol.10

    Carbon-substitution effect on the electronic properties of MgB2_2 single crystals

    Full text link
    The electronic properties of the carbon substituted MgB2_2 single crystals are reported. The carbon substitution drops Tc_c below 2 K. In-plane resistivity shows a remarkable increase in residual resistivity by C-substitution, while the change of in-plane/out-of-plane Hall coefficients is rather small. Raman scattering spectra indicate that the E2g_{2g}-phonon frequency radically hardens with increasing the carbon-content, suggesting the weakening of electron-phonon coupling. Another striking C-effect is the increases of the second critical fields in both in-plane and out-of-plane directions, accompanied by a reduction in the anisotropy ratio. The possible changes in the electronic state and the origin of Tc_c-suppression by C-substitution are discussed.Comment: 6 pages, 8 figure

    Precise comparison of the Gaussian expansion method and the Gamow shell model

    Get PDF
    We perform a detailed comparison of results of the Gamow Shell Model (GSM) and the Gaussian Expansion Method (GEM) supplemented by the complex scaling (CS) method for the same translationally-invariant cluster-orbital shell model (COSM) Hamiltonian. As a benchmark test, we calculate the ground state 0+0^{+} and the first excited state 2+2^{+} of mirror nuclei 6^{6}He and 6^{6}Be in the model space consisting of two valence nucleons in pp-shell outside of a 4^{4}He core. We find a good overall agreement of results obtained in these two different approaches, also for many-body resonances.Comment: 8 pages, 7 figures. Submitted to PR
    corecore