4,127 research outputs found

    Self-similar Radiation from Numerical Rosenau-Hyman Compactons

    Full text link
    The numerical simulation of compactons, solitary waves with compact support, is characterized by the presence of spurious phenomena, as numerically-induced radiation, which is illustrated here using four numerical methods applied to the Rosenau-Hyman K(p,p) equation. Both forward and backward radiations are emitted from the compacton presenting a self-similar shape which has been illustrated graphically by the proper scaling. A grid refinement study shows that the amplitude of the radiations decreases as the grid size does, confirming its numerical origin. The front velocity and the amplitude of both radiations have been studied as a function of both the compacton and the numerical parameters. The amplitude of the radiations decreases exponentially in time, being characterized by a nearly constant scaling exponent. An ansatz for both the backward and forward radiations corresponding to a self-similar function characterized by the scaling exponent is suggested by the present numerical results.Comment: To be published in Journal of Computational Physic

    Numerical Solitons of Generalized Korteweg-de Vries Equations

    Full text link
    We propose a numerical method for finding solitary wave solutions of generalized Korteweg-de Vries equations by solving the nonlinear eigenvalue problem on an unbounded domain. The artificial boundary conditions are obtained to make the domain finite. We specially discuss the soliton solutions of the K(m, n) equation and KdV-K(m,n) equation. Furthermore for the mixed models of linear and nonlinear dispersion, the collision behaviors of soliton-soliton and soliton-antisoliton are observed.Comment: 9 pages, 4 figure

    Dissipative perturbations for the K(n,n) Rosenau-Hyman equation

    Full text link
    Compactons are compactly supported solitary waves for nondissipative evolution equations with nonlinear dispersion. In applications, these model equations are accompanied by dissipative terms which can be treated as small perturbations. We apply the method of adiabatic perturbations to compactons governed by the K(n,n) Rosenau-Hyman equation in the presence of dissipative terms preserving the "mass" of the compactons. The evolution equations for both the velocity and the amplitude of the compactons are determined for some linear and nonlinear dissipative terms: second-, fourth-, and sixth-order in the former case, and second- and fourth-order in the latter one. The numerical validation of the method is presented for a fourth-order, linear, dissipative perturbation which corresponds to a singular perturbation term

    Behavior of a Model Dynamical System with Applications to Weak Turbulence

    Get PDF
    We experimentally explore solutions to a model Hamiltonian dynamical system derived in Colliander et al., 2012, to study frequency cascades in the cubic defocusing nonlinear Schr\"odinger equation on the torus. Our results include a statistical analysis of the evolution of data with localized amplitudes and random phases, which supports the conjecture that energy cascades are a generic phenomenon. We also identify stationary solutions, periodic solutions in an associated problem and find experimental evidence of hyperbolic behavior. Many of our results rely upon reframing the dynamical system using a hydrodynamic formulation.Comment: 22 pages, 14 figure

    Exact solutions of the generalized K(m,m)K(m,m) equations

    Full text link
    Family of equations, which is the generalization of the K(m,m)K(m,m) equation, is considered. Periodic wave solutions for the family of nonlinear equations are constructed

    The Camassa-Holm Equation: A Loop Group Approach

    Full text link
    A map is presented that associates with each element of a loop group a solution of an equation related by a simple change of coordinates to the Camassa-Holm (CH) Equation. Certain simple automorphisms of the loop group give rise to Backlund transformations of the equation. These are used to find 2-soliton solutions of the CH equation, as well as some novel singular solutions.Comment: 19 pages, 7 figures; LaTeX with psfi

    One parameter family of Compacton Solutions in a class of Generalized Korteweg-DeVries Equations

    Full text link
    We study the generalized Korteweg-DeVries equations derivable from the Lagrangian: L(l,p)=āˆ«(12Ļ†xĻ†tāˆ’(Ļ†x)ll(lāˆ’1)+Ī±(Ļ†x)p(Ļ†xx)2)dx, L(l,p) = \int \left( \frac{1}{2} \varphi_{x} \varphi_{t} - { {(\varphi_{x})^{l}} \over {l(l-1)}} + \alpha(\varphi_{x})^{p} (\varphi_{xx})^{2} \right) dx, where the usual fields u(x,t)u(x,t) of the generalized KdV equation are defined by u(x,t)=Ļ†x(x,t)u(x,t) = \varphi_{x}(x,t). For pp an arbitrary continuous parameter 0<pā‰¤2,l=p+20< p \leq 2 ,l=p+2 we find compacton solutions to these equations which have the feature that their width is independent of the amplitude. This generalizes previous results which considered p=1,2p=1,2. For the exact compactons we find a relation between the energy, mass and velocity of the solitons. We show that this relationship can also be obtained using a variational method based on the principle of least action.Comment: Latex 4 pages and one figure available on reques

    Exact solitary and periodic-wave solutions of the K(2,2) equation (defocusing branch)

    Get PDF
    An auxiliary elliptic equation method is presented for constructing exact solitary and periodic travelling-wave solutions of the K(2, 2) equation (defocusing branch). Some known results in the literature are recovered more efficiently, and some new exact travelling-wave solutions are obtained. Also, new stationary-wave solutions are obtained
    • ā€¦
    corecore