72 research outputs found
Mouse Retinal Development: a Dark Horse Model for Systems Biology Research
The developing retina is an excellent model to study cellular fate determination and differentiation in the context of a complex tissue. Over the last decade, many basic principles and key genes that underlie these processes have been experimentally identified. In this review, we construct network models to summarize known gene interactions that underlie determination and fundamentally affect differentiation of each retinal cell type. These networks can act as a scaffold to assemble subsequent discoveries. In addition, these summary networks provide a rational segue to systems biology approaches necessary to understand the many events leading to appropriate cellular determination and differentiation in the developing retina and other complex tissues
Differences in the microbial profiles of early stage endometrial cancers between Black and White women
Objective: Black women suffer a higher mortality from endometrial cancer (EC) than White women. Potential biological causes for this disparity include a higher prevalence of obesity and more lethal histologic/molecular subtypes. We hypothesize that another biological factor driving this racial disparity could be the EC microbiome. Methods: Banked tumor specimens of postmenopausal, Black and White women undergoing hysterectomy for early stage endometrioid EC were identified. The microbiota of the tumors were characterized by bacterial 16S rRNA sequencing. The microbial component of endometrioid ECs in The Cancer Genome Atlas (TCGA) database were assessed for comparison. Results: 95 early stage ECs were evaluated: 23 Black (24%) and 72 White (76%). Microbial diversity was increased (p < 0.001), and Firmicutes, Cyanobacteria and OD1 phyla abundance was higher in tumors from Black versus White women (p < 0.001). Genus level abundance of Dietzia and Geobacillus were found to be lower in tumors of obese Black versus obese White women (p < 0.001). Analysis of early stage ECs in TCGA found that microbial diversity was higher in ECs from Black versus White women (p < 0.05). When comparing ECs from obese Black versus obese White women, 5 bacteria distributions were distinct, with higher abundance of Lactobacillus acidophilus in ECs from Black women being the most striking difference. Similarly in TCGA, Dietzia and Geobacillus were more common in ECs from White women compared to Black. Conclusion: Increased microbial diversity and the distinct microbial profiles between ECs of obese Black versus obese White women suggests that intra-tumoral bacteria may contribute to EC disparities and pathogenesis
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Saethre-Chotzen syndrome : cranofacial anomalies caused by genetic changes in the TWIST gene
In this thesis, one of the most frequently occurring and most variable craniosynostosis
syndromes was investigated; Saethre-Chotzen syndrome. Craniosynostosis is the premature
obliteration of cranial sutures in the developing embryo. It can also occur in the first few
months of life. Saethre-Chotzen syndrome is, besides craniosynostosis, characterized by
specific facial and limb abnormalities, of which the most frequently reported are ptosis,
prominent crus helicis, cutaneous syndactyly of digit 2 and 3 on both hands and feet, and
broad halluces. Saethre-Chotzen syndrome has been linked to the TWIST gene on
chromosome 7p21.1. Mutations in and variably sized deletions of this gene can be found in
patients with clinical features of Saethre-Chotzen syndrome. The latter, TWIST deletions,
often also include part of the surrounding chromosome 7p and are reported to be associated
with mental retardation. In Saethre-Chotzen patients, in whom neither a mutation nor a
deletion of TWIST had been found, the FGFR3 P250R mutation was in some cases detected.
This mutation has specifically been linked to Muenke syndrome that is characterized by unior
bicoronal synostosis and slight facial dysmorphology. However, a Saethre-Chotzen like
phenotype can also result from this mutation.
Because of the possible overlap of Saethre-Chotzen with Muenke syndrome, these syndromes
were studied in order to provide clinical criteria that discriminate between the two (chapter 4).
Many phenotypic features occur in both syndromes. In addition, although unicoronal
synostosis occurs slightly more frequently in Muenke syndrome, unicoronal and bicoronal
synostosis are seen in both syndromes. The discrimination between Saethre-Chotzen and
Muenke is often not made easily and the associated genes, TWIST and FGFR3, respectively,
are simultaneously tested for pathogenic m
W boson polarization measurement in the ttbar dilepton channel using the CDF II Detector
We present a measurement of boson polarization in top-quark decays in
events with decays to dilepton final states using of integrated luminosity in collisions collected by the
CDF II detector at the Tevatron. A simultaneous measurement of the fractions of
longitudinal () and right-handed () bosons yields the results
and . Combining this measurement
with our previous result based on single lepton final states, we obtain and . The results are consistent with standard
model expectation.Comment: Published in Phys. Lett.
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
ELM mitigation by supersonic molecular beam injection: KSTAR and HL-2A experiments and theory
We report recent experimental results from HL-2A and KSTAR on ELM mitigation by supersonic molecular beam injection (SMBI). Cold particle deposition within the pedestal by SMBI is verified in both machines. The signatures of ELM mitigation by SMBI are an ELM frequency increase and ELM amplitude decrease. These persist for an SMBI influence time τI. Here, τI is the time for the SMBI influenced pedestal profile to refill. An increase in fELMSMBI/fELM0 and a decrease in the energy loss per ELM ΔWELM were achieved in both machines. Physical insight was gleaned from studies of density and vΦ (toroidal rotation velocity) evolution, particle flux and turbulence spectra, divertor heat load. The characteristic gradients of the pedestal density soften and a change in vΦ was observed during a τI time. The spectra of the edge particle flux Γ ∼ 〈ṽrñe〉 and density fluctuation with and without SMBI were measured in HL-2A and in KSTAR, respectively. A clear phenomenon observed is the decrease in divertor heat load during the τI time in HL-2A. Similar results are the profiles of saturation current density Jsat with and without SMBI in KSTAR. We note that τI/τp (particle confinement time) is close to ∼1, although there is a large difference in individual τI between the two machines. This suggests that τI is strongly related to particle-transport events. Experiments and analysis of a simple phenomenological model support the important conclusion that ELM mitigation by SMBI results from an increase in higher frequency fluctuations and transport events in the pedestal. © 2014 IAEA, Vienna
Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy
The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.11Nsciescopu
- …