118 research outputs found

    Strings with non-relativistic conformal symmetry and limits of the AdS/CFT correspondence

    Get PDF
    We find a Polyakov-type action for strings moving in a torsional Newton-Cartan geometry. This is obtained by starting with the relativistic Polyakov action and fixing the momentum of the string along a non-compact null isometry. For a flat target space, we show that the world-sheet theory becomes the Gomis-Ooguri action. From a target space perspective these strings are non-relativistic but their world-sheet theories are still relativistic. We show that one can take a scaling limit in which also the world-sheet theory becomes non-relativistic with an infinite-dimensional symmetry algebra given by the Galilean conformal algebra. This scaling limit can be taken in the context of the AdS/CFT correspondence and we show that it is realized by the `Spin Matrix Theory' limits of strings on AdS5_5 ×\times S5S^5. Spin Matrix theory arises as non-relativistic limits of the AdS/CFT correspondence close to BPS bounds. The duality between non-relativistic strings and Spin Matrix theory provides a holographic duality of its own and points towards a framework for more tractable holographic dualities whereby non-relativistic strings are dual to near BPS limits of the dual field theory.Comment: 27 pages, LaTex. v2: Typos corrected, matches published versio

    Identification of glucose transporters in Aspergillus nidulans

    Get PDF
    o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Laparoscopic management of appendicitis and symptomatic cholelithiasis during pregnancy

    Get PDF
    BACKGROUND: Laparoscopic surgery during pregnancy is a challenging procedure that most surgeons are reluctant to perform. The objective of this study was to evaluate whether laparoscopic appendectomy and cholecystectomy is safe in pregnant women. The management of these situations remains controversial. We report a single center study describing the successful management of 16 patients during pregnancy. METHODS: More than 3,356 laparoscopic procedures were performed in our institutions between May 1990 and June 2005. Sixteen of these patients were operated on in the second and third trimester between 22 and 32 weeks of estimated gestational age. We performed 11 laparoscopic appendectomies and 5 laparoscopic cholecystectomies. We also reviewed the management and operative technique used in these patients. RESULTS: In this study, the laparoscopic appendectomy or cholecystectomy was performed successfully in all patients. Three patients were in their second trimester, weeks 22, 23, and 25, and 13 were in the third trimester, weeks 27 (three patients), 28 (five patients), 31 (three patients), and 32 (two patients). No maternal or fetal morbidity occurred. Open laparoscopy was performed safely in all patients and all patients delivered healthy babies. CONCLUSION: From our experience laparoscopic management of appendicitis and biliary colic during pregnancy is safe, however the second trimester is preferable for laparoscopic cholecystectomy. Pregnancy is not a contraindication to the laparoscopic approach to appendicitis or symptomatic cholelithiasis. We believe that laparoscopic operations, when performed by experienced surgeons, are safe and even preferable for the mother and the fetu

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore