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Abstract

To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we
have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally
complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose,
mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The
expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose,
indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A
tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to
different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-
chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton
symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose,
while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-
fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant
strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased
resistance to 2-deoxyglucose.
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Introduction

Glucose represents the main source of carbon and energy
for most heterotrophic organisms, in turn influencing the
regulation of cell growth, metabolism and development [1].
When glucose is available, the synthesis of enzymes specific
for the use of alternative, less preferred, carbon sources are
repressed by a mechanism termed carbon catabolite
repression (CCR) [2]. The action of the orthologous
transcriptional repressors Mig1 and CreA/1, in Saccharomyces
cerevisiae and filamentous fungi respectively, is central to CCR
[3–6]. Subsequently, the sensing of extracellular and
intracellular glucose, in addition to glucose transport, which
occurs via facilitated diffusion [7] represent key events in the
regulation of carbohydrate metabolism.

Budding yeast S. cerevisiae has widely been used as a
model system for the study of hexose sensing and transport
[1,8-12]. In S. cerevisiae, extracellular glucose is sensed by
two specific transmembrane proteins that act as sensors, Rgt2
and Snf3, which demonstrate similarity to hexose transporters
(Hxt proteins). However, these sensor proteins are unable to
transport glucose and have unusually long C-terminal tails
(around 200 amino acids) that are predicted to reside in the
cytoplasm [13] and are necessary for the sensing mechanisms
[14-16]. In the absence of extracellular glucose, a
transcriptional repressor complex, comprised of Rgt1, Std1 and
Mth1, is bound to the promoter regions of HXT genes inhibiting
transcription [17]. Then when Snf3 and Rgt2 detect
extracellular glucose, the Std1 and Mth1 co-repressors are
phosphorylated by the Yck1 and Yck2 kinases [18] and
targeted to the SCFGrr1 E2/E3 ubiquitin complex for
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degradation [19-21]. This process results in the protein kinase
A (PKA) mediated hyperphosphorylation of Rgt1, releasing it
from the promoter regions of HXT genes, allowing their
transcription [22]. Interestingly, the Snf3 and Rgt2 sensors
induce the transcription of specific HXT genes.

Hxt proteins form part of the sugarporter family within the
Major Facilitator Superfamily (MSF) group [23]. In S.
cerevisiae, twenty proteins have been classified as hexose
transport proteins, with different Hxt proteins being
transcriptionally induced depending upon the concentration of
glucose available. Individual transporters have specific
functions, since they all possess different substrate affinities or
specificities such as (i) low-affinity Hxt1p and Hxt3p
[Km(glucose) 100 mM]; (ii) moderate to low affinity Hxt2p and
Hxt4p [Km(glucose), 10 mM]; and (iii) high affinity Hxt6p and
Hxt7p [Km(glucose) 1–2 mM] [24]. Differences in individual
HXT gene expression are not only dependent upon the
concentration of available glucose but also upon osmotic
pressure, starvation, and the physiological state of the cell
[1,15,16,25-32].

Although considerable progress has been made in the
understanding of how S. cerevisiae senses glucose, the
equivalent knowledge of how filamentous fungi sense the
presence of, and uptake, sugar is lacking. Only a single
putative glucose sensor, rco-3, has been described in
Neurospora crassa [33]. In addition, only a few glucose
transporters have been characterized, such as the high affinity
glucose transporters in Amanita muscaria AmMst1, in
Uromyces fabae HXT1, in Tuber borchii TBHX and N. crassa
hgt-1 [34-39]. In the hemibiotrophic plant pathogen
Colletotrichum graminicola several low and high affinity glucose
transporters have been characterized and demonstrated
infection phase specific regulation [40]. In Aspergilli, the A.
niger mstA gene was shown to encode a high affinity glucose
transporter [41] while the A. nidulans hxtA and mstE genes
were characterized as a high affinity hexose transporter and a
low affinity glucose transporter, respectively [42,43]. Recently,
a high affinity glucose transporter, Hxt, was identified in
Fusarium oxysporium that is able to transport glucose and
xylose [44].

In order to characterize the mechanisms involved with
glucose transport in the filamentous fungus A. nidulans, we
have identified and characterized four putative glucose
transporter homologues. To characterize their kinetic
properties, we have expressed each homologue in a S.
cerevisiae strain that cannot grow on D-glucose as a single
carbon source. A. nidulans null mutants for these genes were
analyzed for their ability to transport glucose. Using the
aforementioned approaches, we were able to classify these
genes as glucose transporters.

Results

Identification of glucose transporter homologues in A.
nidulans

A BLASTp search of the A. nidulans genome (http://
www.aspgd.org) using several genes from different fungal
species that have been functionally identified as encoding
glucose transporters [33-44] revealed four open reading frames
as the best hits, with significant similarity to most of them
(Table 1). The proteins of the four potential homologues,
AN1797, AN10891, AN8737, and AN6669 (here named hxtB-
E) were predicted to be from 527 to 535-amino acids in length
and all belonged to the sugar porter subfamily of the Major
Facilitator Superfamily (MFS). The HxtB and HxtD proteins
contained 12 transmembrane segments (Figures 1A and C),
while HxtC and HxtE contained only 10 helices (Figures 1B and
D). All four Hxt transporters possessed a short C-terminal tail
(Figure 1 A-D). Subsequently, the transcription of the four hxt
genes when A. nidulans is grown in the presence of either 1 or
0.1 % glucose was confirmed via RT-qPCR (Figure 2). A
putative high-affinity glucose transporter, hxtA, which has
increased mRNA accumulation when A. nidulans is grown in
the presence of low glucose concentrations or during carbon
starvation was used as a control [42]. As previously described,
hxtA showed higher mRNA accumulation at 0.1 % glucose
(Figure 2A), while hxtB, hxtC, hxtD, and hxtE also showed
higher levels of mRNA accumulation in 0.1 % than in 1.0 %
glucose (Figures 2B- E).

Table 1. A. nidulans putative glucose transporters identified as possible homologues of fungal glucose transporters.

Genes Species AN1797 (hxtB) AN10891 (hxtC) AN8737 (hxtD) AN6669 (hxtE)

  Identity (%) e-value Identity (%) e-value Identity (%) e-value Identity (%) e-value
Rco3 N. crassa 49 0.0 94 1e-173 41 4e-125 42 6e-134
Hgt1 N. crassa 30 1e-64 0 0 29 4e-63 30 6e-69
Mst1 A. muscaria 51 2e-159 50 2e-175 47 3e-152 48 7e-156
Hxt1 T. borchii 59 0.0 60 0.0 47 1e-157 47 1e-152
Hxt1 C. graminearum 60 0.0 67 0.0 48 8e-158 47 1e-156
MstA A. niger 80 0.0 0.0 0 81 0.0 47 3e-139
Hxt1 U. fabae 47 2e-149 50 4e-145 43 3e-133 43 3e-133
HxtA A. nidulans 29 2e-62 28 2e-58 29 3e-63 28 2e-60
MstE A. nidulans 33 2e-93 32 3e-90 32 2e-88 33 2e-88
Hxt1 F. oxysporum 29 6e-47 32 2e-47 28 3e-51 28 4e-52

doi: 10.1371/journal.pone.0081412.t001

Aspergillus nidulans Glucose Transporters
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To gain more insight into the function of the hxtB-E genes
during A. nidulans sexual development, we examined their
expression during the sexual cycle (Figure 3). First, asexual
spore development was synchronized by transferring a thin
mycelial mat filtered from liquid culture to an agar plate [45].
The exposure of cells to an air interphase induces development
and conidiophores formation by 24–48 h. To induce sexual
development, we incubated the mycelia for 11 days. By the
third day, young cleistothecia could be observed. By the sixth
and eleventh days, immature and mature ascospores could be
detected respectively (data not shown). Total RNA was isolated
at the different stages of sexual development and analyzed by
real-time qPCR to determine transcript levels of nsdD and
hxtB-D genes (Figure 3). The nsdD gene encodes a predicted
GATA-type zinc-finger transcription factor required for sexual
development [46]. As expected, the nsdD gene showed
increased mRNA accumulation during sexual development
(Figure 3A). The hxtB-E showed increased mRNA
accumulation during vegetative growth (control), but they
showed decreased mRNA accumulation in both asexual
development (the first 48 h) and sexual development (Figure
3B-E).

Characterization of the hxtB-E Genes in S. cerevisiae
To show the functionality of the putative A. nidulans glucose

transporter-encoding genes, we evaluated functional
complementation of hxtB-E in the S. cerevisiae strain
EBY.VW4000, which is unable to grow on glucose, fructose,
mannose or galactose as the sole carbon source [47].

Subsequently, hxtB-E were cloned into the centromeric
modified vector pRH195 under the control of the HXT7
promoter and terminator. Transformants were selected in
maltose liquid medium, and serial dilutions of logarithmically
growing cells were spotted in onto YNB agar plates containing
either one of the following carbon sources: glucose, fructose,
mannose or galactose, at a range of different concentrations.
Maltose was used as a positive control for growth and a
transformant carrying the empty plasmid was used as negative
control, where no growth was observed on medium containing
sugars that do not sustain the EBY.VW4000 strain (Figure 4).
The drop-out assay showed that the expression of HxtB, HxtC
or HxtE was able to restore the growth of EBY.VW4000 on
glucose, indicating that the corresponding genes encode
glucose transporters (Figure 4). Moreover the strains
expressing HxtB, HxtC or HxtE were also able to grow on
fructose, mannose or galactose indicating that the encoded
transporters accept multiple sugars as a substrate. However,
their growth was inhibited at higher sugar concentrations, such
as 2.0 % (Figure 4). The S. cerevisiae strain expressing hxtD
was unable to grow on glucose or fructose and displayed very
little growth on mannose or galactose (Figure 4). In S.
cerevisiae, HxtB-E were confirmed to be targeted to the plasma
membrane (Figure 5). Thus, the inability of hxtD to restore
EBY.VW4000 growth on glucose cannot be explained by the
incorrect targeting of the protein.

Subsequently, we concentrated our attention on the growth
rate and glucose consumption of the HxtB, HxtC, and HxtE
strains in YNB medium with 0.05 or 0.2% (w/v) glucose, during

Figure 1.  Transmembrane helices prediction for the A. nidulans HxtB-E transporters (predicted via TMHMM; http://
www.cbs.dtu.dk/services/TMHMM/) and long C-terminal tails.  The HxtB (A) and HxtD (C) contain 12 helices, while HxtC (B) and
HxtE (D) contain 10 helices.
doi: 10.1371/journal.pone.0081412.g001
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shake-flask aerobic batch cultivations. The S. cerevisiae strain
expressing hxtD was excluded due to the absence of growth on
glucose. S. cerevisiae expressing the hxtB or hxtE genes
demonstrated highest growth rates at the glucose
concentrations evaluated (Figure 6A, Table 2). The strain
expressing the hxtC gene grew very slowly at 0.05 and 0.2 %
(w/v) glucose (Figure 6B, Table 2) and no growth improvement
was observed at higher glucose concentration (2%, w/v; data

not shown). These findings were confirmed by the glucose
consumption profile (Figures 6A-B). In addition, no ethanol
production was detected in any of the glucose concentrations
tested, for any of the strains expressing hxtB, hxtC or hxtE
(data not shown).

The HxtB, -C, and –E transporters were also able to accept
other sugars as substrates (Figure 4). Thus, to confirm this
physiological data, we studied the uptake of [14C]glucose in the

Figure 2.  The A. nidulans hxtA-E mRNA accumulation levels during growth in 0.1 or 1 % glucose.  The wild-type strain was
grown for 24 or 48 hours in MM liquid medium supplemented with either 0.1 or 1 % glucose. Real-time qPCR for hxtA-E (A-E)
genes.
doi: 10.1371/journal.pone.0081412.g002
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absence or presence of either fructose, mannose or galactose
as potential transport competitors (Figure 7A-C). As expected,
a 10-fold excess of unlabeled glucose drastically inhibited the
transport of radiolabeled glucose in the S. cerevisiae cells
expressing hxtB,-C, and –E (Figures 7A-C). A tenfold excess of
unlabeled maltose, galactose, fructose and mannose were also
able to inhibit to different levels (50 to 80 %) of radiolabeled
glucose transport in the S. cerevisiae cells expressing hxtB,-C,
and –E (Figures 7A-C). These results suggest that HxtB, -C,
and –E have different substrate affinities.

To determine whether the mechanism by which HxtB, HxtC
and HxtE transport glucose was by passive facilitated diffusion
or active proton symport, we evaluated the sensitivity of each
transporter to cyanide-m-chlorophenylhydrazone (CCCP), an
uncoupler of transmembrane proton gradients. Upon the
addition of CCCP, [14C]glucose uptake was affected in S.

cerevisiae cells expressing hxtB, -C, and –E, demonstrating a
80, 70 and 55 % reduction in the respective strains (Figure 7D).
Taken together, these data suggested that HxtB, HxtC, and
HxtE mediated glucose transport via active proton symport.

14C-glucose transport in the null mutants of hxtB-E
A. nidulans hxtB-E null alleles were generated using an in

vivo S. cerevisiae fusion-based approach (see Materials and
Methods). Several primary transformants that had homologous
integration of either pyrG (hxtD) or pyroA (hxtB,-C,-E) at the
hxtB-E loci were isolated and one of each gene was selected
for further characterization.

Since previous studies have described that glucose uptake in
germinating conidia (incubated with 1.0 % glucose) is an
energy dependent process [6], we evaluated the impact of
each deletion on conidia germination at a this glucose

Figure 3.  The A. nidulans hxtA-E mRNA accumulation levels during asexual and sexual development.  Asexual spore
development was synchronized by transferring a thin mycelial mat filtered from liquid culture (grown stationary at 37 °C for 24 hours;
C=control) to an agar plate. To induce sexual development, we incubated the mycelia for 11 days (0–2 days: conidiophore
development and asexual development; 2–11 days: cleistothecia development and sexual development; and 6–11 days: the
presence of ascospores). Real-time qPCR for hxtA-E (A-E) genes.
doi: 10.1371/journal.pone.0081412.g003
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concentration. In fact under these conditions, we found that
glucose uptake in A. nidulans obeyed a single saturation kinetic
with a Km = 10.7 ± 0.9 mM and a Vmax = 2.1 ± 0.1 µmol of
glucose h–1 per 2.5 × 107 conidia (Figure 8). The ΔhxtB mutant
strain showed both a decreased affinity for glucose (Km = 25.3
± 3.4 mm) and a reduction in transport capacity (Vmax = 1.16 ±
0.06 µmol of glucose per hour per 2.5 × 107 conidia; Figure
8A). The same behaviour was also observed for ΔhxtC mutant
strain that showed both a decreased affinity for glucose and
speed of transport compared to the wild-type strain (a Km =
26.0 ± 2.7 mm and a Vmax = 1.20 ± 0.05 µmol of glucose per
hour per 2.5 × 107 conidia (Figure 8B). Interestingly, in the case
of the ΔhxtD mutant, we also found alterations in the glucose
uptake system, but this time an increase in Km and Vmax values

to 77.6 ± 12.1 µm and 6.1 ± 0.5 µmol of glucose per hour per
2.5 × 107 conidia (Figure 8C). Despite the fact that the
introduction of HxtD to the EBY.VW4000S strain did not restore
growth on glucose, its deletion in A. nidulans resulted in the
loss of both glucose affinity and transport speed. The deletion
of HxtE in A. nidulans resulted in a decrease in glucose affinity,
but had little impact on the speed of transport (Figure 8D; Km =
23.1 ± 2.4 mm and a Vmax = 2.2 ± 0.1 µmol of glucose per hour
per 2.5 × 107 conidia)

Taking into consideration the impact of each HxtB-E
deletions on glucose uptake, we evaluated the growth of the
null hxtB-E mutants compared to the wild-type strain on solid
MM supplemented with a single carbon sources, such as
glucose, xylose, maltose, glycerol, mannose, fructose, acetate,

Figure 4.  Comparative growth analyses of the S. cerevisiae cells expressing one of the four hxtB-E transporters.  Tenfold
dilutions (left to right) of S. cerevisiae cells (strain EBY.VW4000) expressing the indicated hxt cDNA or harbouring the empty
expression vector were spotted on agar medium and incubated for 144 hour at 30 °C on plates containing the indicated carbon
source.
doi: 10.1371/journal.pone.0081412.g004
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rhamnose, casein, carboxymethylcellulose, inulin, guar,
peptone, and pectin at 30, 37, and 44 °C. The four strains
showed the same growth and conidiation as the wild-type strain
under all the tested conditions (data not shown).

Finally, we investigated the glucose consumption by growing
the wild-type and the ΔhxtB-E in liquid MM medium with either
0.1 % or 1% of glucose (Figure 9). When grown in MM+0.1 %
glucose, all the strains showed a comparable rate in glucose
consumption, except for the ΔhxtB mutant strain which showed
a delayed consumption of glucose (Figure 9A). The same
behaviour was observed for the ΔhxtB mutant strain in MM+1.0
% glucose (Figure 9B). The lower affinity for glucose in the
ΔhxtB mutant strain was emphasized by its increased
resistance to carbon catabolite repression, when the wild-type
and the mutant strains were grown in increasing concentrations
of xylose+2 mM 2-deoxyglucose (2DG), which is a toxic
glucose analogue (Figure S2). Taken together, these results
suggest that the lack of hxtB results in the less efficient
transport of glucose under low concentration.

Discussion

Understanding how filamentous fungi can transport and
sense glucose is of a topic of substantial interest to industrial
mycology. As a preliminary step to identify genes involved in
these processes within A. nidulans, we characterized four
genes that showed homology to other functionally
characterized fungal glucose transporters. These four genes
named hxtB-E are from the sugar porter subfamily of the MFS
transporters. Despite hxtB-E demonstrating high identity with
the S. cerevisiae glucose sensors, Snf3p and Rgt2p (data not
shown), the absence of an extended cytosolic tail, essential for
the intracellular signaling role in S. cerevisiae [15,16,20],

suggests that the A. nidulans proteins were transporters.
However, HxtB-E possessed an extended cytosolic region
within the center of the respective proteins, which could play a
signaling role. Rgt2 and Snf3 have an approximately 50 amino
acids long central region, while HxtB-E have 91, 129, 88, and
99 amino acids long central regions, respectively. The lack of a
glutamine-rich region that acts as a mediator of protein-protein
interaction, indicative of a signaling molecule, such as within
the central cytosolic region of in RCO3 glucose sensor from N.
crassa, implies otherwise [33,48]. Subsequently, biochemical
and molecular assays enabled the classification of these Hxt
proteins as glucose transporters. No transporters with
extended cytosolic regions at either the N- or C-terminus were
found in any Aspergilli whose genomes are available (data not
shown). Thus, it is possible as suggested [49,50] that the
global expression of transporters during the A. nidulans
isotropic growth phase, i.e., during spore germination
[43,49–51] might operate as a general system for sensing
solute availability.

The previously characterized high affinity glucose transporter
HxtA was shown to be transcriptionally induced under glucose
starvation and sexual development [42]. In contrast, hxtB-E
showed decreased mRNA accumulation during sexual
development. In A. nidulans, hxtB, -C, -D, and -E also
demonstrated increased mRNA accumulation when exposed to
low glucose concentrations. The hexose transport-deficient S.
cerevisiae strain (EBY.VW4000) has been an important tool for
characterizing new hexose transporters of other fungi, such as
four transporters from the hemibiotrophic plant pathogen
Colletotrichum graminicola (CgHXT2, CgHXT3, CgHXT4 and
CgHXT5) [40] and TBHXT1 transporter from the ascomycete
Tuber borchii [36]. Subsequently, the ability of HxtB, -C, and –E
to complement the growth defect of this strain on glucose,

Figure 5.  Subcellular localization of hxtB-E in S. cerevisiae.  Subcellular localization of hxtB-E in S. cerevisiae grown in: 0.2%
glucose, 2% glucose or 2% maltose, was determined by fluorescence microscopy. Scale bar, 5 μm.
doi: 10.1371/journal.pone.0081412.g005
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galactose, fructose, mannose, and sucrose, confirmed these
proteins to be hexose transporters, while competition

experiments showed them to possess a higher affinity for
glucose. In contrast, HxtD was unable to restore growth,

Figure 6.  Evaluation of the growth rate, glucose consumption and kinetic parameters for S. cerevisiae cells (strain
EBY.VW4000) expressing the hxtB (A and B) –C (C and D), and –E genes (E and F) grown on either 0.05 or 0.2 % glucose.  
doi: 10.1371/journal.pone.0081412.g006

Table 2. Specific growth rates (μ; h-1) of S. cerevisiae EBY.VW4000 strain expressing either hxtB, hxtC or hxtE genes grown
in YNB medium with glucose at 0.05% or 0.2% (w/v) as the only carbon source.

 μ (h-1)

 0.05% 0.2%
hxtB 0.118 ± 0.001 0.084 ± 0.002
hxtC 0.019 ± 0.002 0.016 ± 0.001
hxtE 0.110 ± 0.0002 0.098 ± 0.0011

doi: 10.1371/journal.pone.0081412.t002
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despite being localized to the S. cerevisiae cell membrane, on
any of the tested sugar sources. It is possible glucose transport
by HxtD may involve transporter cooperation with other
transporter proteins interacting with each other to produce
specific phenotypes aiming to achieve a high rate of glucose
influx [52]. Evidence of such transport cooperation has already
been demonstrated when coexpressing Candida intermedia
GXS1 glucose/xylose symporter and GXF1 glucose/xylose
facilitator [53].

Few Aspergilli glucose transporters that have been
functionally characterized [6,41-43]. As previously shown, D-
Glucose uptake in germinating wild-type A. nidulans conidia is
an energy-requiring process mediated by transport systems
with differing affinities for glucose [6]: a low-affinity system (km
~ 1.4 mM), and intermediate-affinity system (Km~400mM), and
a high-affinity system (Km ~ 16 mM). To investigate the
involvement of hxtB-E in the glucose transport system and
metabolism in A. nidulans we generated and characterized the
corresponding null mutants. We were not able to see any

relevant phenotypic differences in these mutants when
compared to the wild-type strain, except for the ΔhxtB mutant
strain that showed a decreased rate of glucose consumption at
low concentrations and an increased resistance to 2-DG. This
indicates that although A. nidulans possesses other
transporters capable of compensating for the absence of these
transporters, the absence of HxtB has a measurable effect on
glucose metabolism at low concentration. We detected a
reduction on the glucose uptake for ΔhxtB-E mutants, with the
loss of at least twice (ΔhxtB, ΔhxtC, and ΔhxtE) and seven-fold
(ΔhxtD) affinity for glucose. Glucose uptake experiments using
the S. cerevisiae strains expressing hxtB, -C, and –E,
performed in the presence of CCCP, which blocks
transmembrane proton gradients, strongly indicated that these
A. nidulans transporters also act as energy-dependent
glucose/H+ symporters. Many other glucose transporters,
identified in filamentous fungi, such as U. fabae HXT1 [35],
glomeromycotan GpMST1 [37], Glomus MST2 [54], and four

Figure 7.  Substrate specificities of the indicated Hxt transporters.  Substrate specificities of HxtB (A), HxtC (B), and HxtE (C)
were determined in S. cerevisiae cells (strain EBY.VW4000) expressing the respective cDNA. Relative transport levels were
determined in the absence of a competitor or in the presence of a tenfold excess of unlabeled glucose or a tenfold excess of
unlabeled maltose, galactose, fructose, or mannose (n=3, ±, standard deviation). The results are expressed as the percentage of
inhibition of the transport of radiolabelled glucose. (D) Sensitivities of the HxtB-E transporters to the uncoupler CCCP in the absence
or presence of 250 μM CCCP (n=3, ±, standard deviation).
doi: 10.1371/journal.pone.0081412.g007
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transporters CgHXT1-4 from C. graminicola [40] have all been
shown to be energy-dependent.

The presented study set out to improve the understanding of
glucose metabolism in A. nidulans via studying the role of four
possible glucose transporters. The data described provides a
clear molecular and biochemical characterization of four genes
involved with glucose uptake in A. nidulans.

Materials and Methods

Strains, media and culture methods
The genetic backgrounds of the A. nidulans strains used in

this study are described in Table 3. Two basic types of media
were used, i.e. complete and minimal. Three variants of
complete media were used: YAG (2% w/v glucose, 0.5% w/v
yeast extract, 2% w/v agar, trace elements), YUU (YAG
supplemented with 1.2 g/liter [each] of uracil and uridine), and
liquid YG or YG+UU medium with the same composition but
without agar. A modified minimal media (original high-nitrate
salts, trace elements, 2% w/v agar, pH 6.5) containing either
2%, 1%, 0.1% glucose (w/v) or no carbon source were used.
Trace elements, vitamins, and nitrate salts were included as
described by 55. A. nidulans strains were grown at 37°C unless
indicated otherwise.

The S. cerevisiae sugar transporter knockout strain
EBY.VW4000 (CEN.PK2-1C Δhxt1-17 Δstl1 Δagt1 Δydl247w
Δyjr160c Δgal2) [45] was used for the in vivo complementation
phenotype assays. The S. cerevisiae SC9721 strain (MATα
his3-Δ200 URA3-52 leu2Δ1 lys2Δ202 trp1Δ63) acquired from
the Fungal Genetic Stock Center (FGSC) was used for in vivo
recombination. Yeast strains were cultivated at 30°C in
synthetic medium (SC, 0.67% Difco yeast nitrogen base
without amino acids, 0.083 % amino acid drop out mix)
supplemented with glucose or another specific carbon source.

Construction of A. nidulans hxtB-E null mutants
Standard genetic techniques for A. nidulans were used for all

strain constructions and genetic transformation [55,56]. DNA
manipulations were performed according to [57]. All PCR
reactions were performed using Phusion High-Fidelity DNA
polymerase (New England Biolabs), except for the amplification
of whole cassettes where TaKaRa Ex Taq DNA Polymerase
(Clontech USA) was used. All the primers used in this work are
listed in Table S1.

Deletion cassettes for ΔhxtB, C and E (AN6669, AN10891
and AN1797, respectively) were constructed by in vivo
recombination in S. cerevisiae as previously described [58].
Briefly, a construct consisting of a 1.0-kb region of the 5´-UTR

Figure 8.  Km values for glucose in the A. nidulans wild-type and ΔhxtB-E mutant strains.  Uptake rates for [14C] glucose
germinating conidia of the wild-type and ΔhxtB-E (A-D) mutant strains were determined at the indicated substrate concentrations at
pH 7.0. Michaelis-Menten plots of the same data are shown (n=3, ±, standard deviation).
doi: 10.1371/journal.pone.0081412.g008
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and 3´-UTRs (primers P1-6 and P7-12 respectively) flanking
each of the target genes and the A. fumigatus pyroA gene (P13
and P14; used as a selective marker for pyridoxine
prototrophy) was constructed by in vivo recombination in S.
cerevisiae. The 5´-UTR, 3´-UTR and pyroA fragments plus the

linearized pRS426 vector cut with EcoRI and BamHI, were
purified from agarose gel and transformed into S. cerevisiae
SC9721 strain using the lithium acetate method [59]. The
external 5´-UTR Forward and 3´-UTR Reverse primers
possessed cohesive ends with the vector pRS426 and the

Figure 9.  The speed of glucose consumption during growth of the wild-type and ΔhxtB-E A. nidulans mutant strains in
different glucose concentrations.  The wild-type and mutant strains were grown in MM+0.1 % glucose (A) or MM+1.0 % glucose
and the residual glucose concentration (g/l) was determined.
doi: 10.1371/journal.pone.0081412.g009

Table 3. Plasmids and A. nidulans and S. cerevisiae strains used in this work.

Plasmids/Strains  Genotype Reference
pRS426 ampR lacZ URA3 [63,]
pCDA21 Zeo::pyr ampR [64]
pRH195 * pBluescript II SK+, TRP1, CEN6, ARSH4+ PHXT7-XKS1-THXT7 [65]
TNO2A3 pyroA4 pyrG89; chaA1; ΔnKuA::argB [60]
ΔhxtB pyroA4 pyrG89; chaA1; ΔnKuA::argB; ΔhxtB::pyroA4 This work
ΔhxtC pyroA4 pyrG89; chaA1; ΔnKuA::argB; ΔhxtC::pyroA4 This work
ΔhxtD pyroA4 pyrG89; chaA1; ΔnKuA::argB; ΔhxtD::pyrG This work
ΔhxtE pyroA4 pyrG89; chaA1; ΔnKuA::argB; ΔhxtE::pyroA4 This work
SC9721 MATa his 3-D200 URA 3-52 leu2D1 lys 2D202 trp 1D63 FGSC

EBY.VW4000
MATK leu2-3,112 ura3-52 trp1-289 his3-v1 MAL2-8c SUC2 hxt17v hxt13v : :loxP hxt15v: :loxP hxt16v: :loxP hxt14v : :loxP hxt12v: :loxP
hxt9v: :loxP hxt11v: :loxP hxt10v: :loxP hxt8v : :loxP hxt514v: :loxP hxt2v: :loxP hxt367v : :loxP gal2v stl1v : :loxP agt1v : :loxP
ydl247wv: :loxP yjr160cv: :loxP

[47]

*. The original vector pRH195 carries the XKS1 gene which was released after digestion with SpeI and SalI. The resultant vector without the XKS1 gene was used in this
work for compl ementation assays.
doi: 10.1371/journal.pone.0081412.t003
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internal primers 5´-UTR R and 3´-UTR F contained cohesive
ends with 5´ and 3´sequence of pyro gene. All cassettes were
PCR-amplified from genomic DNA extracted from the
respective S. cerevisiae transformant, purified and used to
transform A. nidulans strain TNO2a3 (ΔnkuA) strain [60],
according to [56]. Transformants were scored for their ability to
grow on minimal medium without pyridoxine and homologous
integration confirmed by PCR (Figure S1). The deletion
cassette for ΔhxtD was acquired from the FGSC. This cassette
carried the pyrG gene as a selective marker for uridine and
uracil prototrophy. The deletion cassette was PCR amplified
using specific primers (P15 and P16)

S. cerevisiae genomic DNA was extracted by using the
protocol described by 61. All cassettes were PCR-amplified
using TaKaRa Ex Taq DNA Polymerase (Clontech) and used
for transformation of wild-type A. nidulans strain TNO2a3
(ΔnkuA) strain [60] according to [56]. Transformants were
scored for their ability to grow on minimal medium without
uridine and uracil and checked by PCR to confirm their
homologue integration.

RNA extraction and Real-time PCR reactions
Asexual spore development was synchronized by

transferring a thin mycelial mat, filtered from liquid culture, to
an agar plate. To induce sexual development, we incubated the
mycelia for 11 days (0–2 days: conidiophore development and
asexual development; 2–11 days: cleistothecia development
and sexual development; 6–11 days: presence of ascospores).
Mycelia were harvested, washed twice with dH2O and
immediately frozen in liquid nitrogen. The mycelia were then
lyophilized, disrupted by grinding in liquid nitrogen and total
RNA was extracted using the RNeasy Plant Mini Kit (Qiagen).
To check RNA integrity, 10 µg of RNA was fractionated in 2.2
M formaldehyde, 1.2% agarose gel, stained with ethidium
bromide, and visualized under UV-light. A total of 20 µg of RNA
were treated with RNAse-free DNAse (Promega), purified with
RNeasy Mini Kit (Qiagen) and then quantified on a NanoDrop
2000 Thermo Scientific). The SuperScript III First Strand
Synthesis system (Invitrogen) and oligo(dT) primers were used
for cDNA synthesis, according to the manufacturer’s protocol.
All RT-qPCR reactions were performed using an ABI 7500 Fast
Real-Time PCR System (Applied Biosystems) and Taq-Man™
Universal PCR Master Mix kit (Applied Biosystems). The RT-
qPCR reactions and calculations were performed according to
[62]. The primers and Lux™ fluorescent probes (Invitrogen)
used in this work are described in Table S1.

Constructions for S. cerevisiae complementation
assays

The sugar transporter deletion strain EBY.VW4000 was used
for the S. cerevisiae complementation assays [45]. More than
20 sugar transporters and sensors including HXT1-17 and
GAL2 have been deleted from this strain [45]. For this reason,
the strain is unable to grow on D-glucose, but it can grow on
maltose, as a single carbon source. The hxtB-E ORFs were
PCR amplified from A. nidulans cDNA using specific primers
P29-30, P31-32, P33-34 and P35-36, respectively (Table S1).
Note that the reverse primers included the stop codon. The

forward and reverse primers (P29-36) possessed cohesive
ends for the modified vector pRH195 (under the control of the
HXT7 promoter and terminator) which was double digested
with SpeI and SalI to liberate the XKS1 gene and linearize the
vector. The purified linearized plasmid and PCR-amplified
sugar transporter ORFs were transformed into S. cerevisiae
EBY.VW4000 strain by lithium acetate method [59], where they
underwent in vivo recombination. Transformants were selected
for tryptophan prototrophy on a SC medium supplemented with
tryptophan and 2% maltose (SC-Trp). Genomic DNA of single
colonies was isolated as described by 62 and the specific
ORFs were PCR amplified using specific primers. Single
transformed colonies were analyzed for their ability to grow on
SC-Trp medium supplemented with either 2% glucose or 0.2%
glucose.

The subcellular localization of hxtB-D in S. cerevisiae was
checked by constructing hxtB-E::GFP cassettes. Thus, these
ORFs were tagged with GFP at their C-terminal. The GFP
gene was separated from the target ORF by the Spacer-GFP
[63,]. Briefly, each ORF were PCR amplified from cDNA of the
A. nidulans A4 strain using primers P29 and 37 (hxtB), P31 and
38 (hxtC), P33 and 39 (hxtD) and finally P35 and 40 (hxtE)
(Table S1). The forward primers included the Spacer-GFP
sequence and omitted the stop codon. The forward and
reverse primers possessed cohesive ends with the vector
modified pRH195, which was double digested with SpeI and
SalI for linearization. The GFP gene containing the stop codon
was amplified from pMCB17apx (kindly provided by Vladimir P.
Efimov; primers P41 and P42) (Table S1) and the forward
primer possessed cohesive ends with the modified vector
pRH195 which was double digested with SpeI and SalI for
linearization. In order to get in vivo recombination in S.
cerevisiae, the linearized modified pRH195 plasmid was
purified from agarose gel and transformed into S. cerevisiae
EBY.VW4000 strain with PCR-amplified sugar transporter
ORFs and GFP gene by lithium acetate method [59]. The
transformants were selected for tryptophan prototrophy on a
SC medium supplemented with tryptophan and 2% maltose
(SC-Trp). Genomic DNA of single colonies was isolated as
described by 59 and the specific ORFs were PCR amplified
using specific primers. Single transformed colonies were
analyzed for their ability to grow on SC-Trp medium
supplemented with either 2% glucose or 0.2% glucose.

Liquid growth conditions for S. cerevisiae
S. cerevisiae EBY.VW4000 expressing hxt-B, -C, -D and -E

were grown in YNB medium supplemented with different
carbon sources. The cultures were performed in flasks
containing a 2:1 ratio of gas to liquid phase in an orbital shaker
(160 rpm) at 26°C. Growth was monitored via OD
measurements at 640 nm, while aliquots were taken at each
time point to evaluate the concentration of glucose and ethanol
in the medium.

Estimation of glucose and ethanol concentrations
using S. cerevisiae strains

Glucose and ethanol concentrations in the media were
assayed by high-performance liquid chromatography, using a
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Refractive Index detector and a HyperREZ XP Organic Acids
(8µm 100mm x 7.70mm) column at 57°C. The column was
eluted with 2.5 mM of sulphuric acid at a flow rate of 0.7 ml/
min. The sample was injected through Gilson 234 auto-injector,
with a retention time for glucose of 7.43 min and for ethanol of
15.29 min.

Estimation of cell dry weight for S. cerevisiae
The dry weight of S. cerevisiae cells (DW) from the different

transformants was determined using pre-weighed aluminium
caps. After removal of the medium by centrifugation, the
cellular samples were washed with 4 volumes of ice-cold dH2O
and transferred to the aluminium caps for drying overnight at
80°C before being reweighed. Parallel samples varied by less
than 1%.

Evaluation of free glucose in the extracellular culture
medium

For the glucose uptake assay, a total of 1x 107 spores were
inoculated in 100 ml of MM containing 1% or 0.1% glucose,
maintained at 37°C in an orbital shaker. Aliquots (3 ml) of the
supernatant were collected after 4, 8, 12, 16, 20, 24, and 48
hours and stored at -20°C. The enzymatic kit Glucose GOD-
PAP Liquid Stable Mono-reagent (LaborLab Laboratories Ltda)
was used to measure free glucose in the medium, according to
the manufacturer’s specifications.

A. nidulans glucose uptake assay
Glucose uptake rates were measured by assaying the

incorporation of D-[U-14C] glucose [289.0 mCi/mmol (10.693
GBq)/mmol] (Perkin Elmer Life Sciences) in germinating
conidia at various D-glucose concentration according to [6] with
modifications. Briefly, 1.2 x 109 conidia were inoculated into
600 ml MM containing 1% D-glucose (w/v) as a carbon source.
Incubation was carried out for 6 h at 37°C in an orbital shaker
at 180 rpm. Germinating conidia were harvested by filtration
over nitrocellulose filters (Fisherbrand) mounted in a vacuum
manifold and washed twice with ice-cold water to eliminate
traces of glucose. For glucose transport analysis, aliquots of
250 μl (of 2.5 x 107 germinating conidia) containing D-glucose
[0.1-100mM] were dispensed into 2 ml tubes plus 1 μl of
radiolabelled 14C-glucose (0.2 μCi) and incubated at 37°C. After
incubation for 30 to 60 seconds, uptake was immediately
quenched by the addition of 1.5 ml ice-cold water and filtration
over nitrocellulose filters (Fisherbrand) mounted in a vacuum
manifold, followed by two consecutive washes with 1.5 ml of
ice-cold water. Filters were subsequently transferred to 8 ml of
ScintiSafeTM Econo1 scintillation liquid (Fisher Scientific). The
D-[U-14C] glucose taken up by cells was measured using Tri-
Carb® 2100TR Liquid Scintillation Counter.

CCCP assays
For CCCP (carbonylcyanide m-chlorophenylhydrazone)

assays using S. cerevisiae strains, 500 ml of SC-Trp medium
supplemented with 0.2 % glucose was incubated at 30°C with
EBY.WV4000 strain harboring one of the hxtB, hxtC or hxtE
genes. Cultures started from an initial OD640 0.1 and were
grown until reached OD640 ~ 0.6. Cells were harvested by
centrifugation (4000 rpm), washed twice with 50 ml ice-cold
water and resuspended in 1.250 ml of water. A total of 400 μl of
cells was diluted in 800 μl of water and aliquots of 40 μl
incubated at 30°C for 5 min to allow temperature equilibration.
Subsequently, 10 μl of water containing 250 μM of CCCP were
added 5 minutes before or concomitantly with 0.2 μCi of 14C-
glucose. Subsequently, the reaction was immediately stopped
by quenching with 1.5 ml ice-cold water and filtration over
nitrocellulose filters (Fisherbrand) mounted in a vacuum
manifold, followed by two consecutive washes with 1.5 mL of
ice-cold water. Filters were subsequently transferred to 8 ml of
ScintiSafeTM Econo1 scintillation liquid (Fisher Scientific). The
D-[U-14C] glucose taken up by cells was measured using Tri-
Carb® 2100TR Liquid Scintillation Counter.

Supporting Information

Figure S1.  PCR confirmation of homologue integrations
for A. nidulans mutants ΔhxtB, ΔhxtC, ΔhxtD and ΔhxtE.
(TIF)

Figure S2.  Growth phenotypes of A. nidulans wild-type
and ΔhxtB-E mutants grown on different concentrations of
xylose (A) or xylose plus 0.2 mM 2-deoxy-glucose (2-DG).
(TIF)

Table S1.  Primers and probes used in this work.
(DOC)
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