119 research outputs found

    Dystrophin glycoprotein complex dysfunction:a regulatory link between muscular dystrophy and cancer cachexia

    Get PDF
    SummaryCachexia contributes to nearly a third of all cancer deaths, yet the mechanisms underlying skeletal muscle wasting in this syndrome remain poorly defined. We report that tumor-induced alterations in the muscular dystrophy-associated dystrophin glycoprotein complex (DGC) represent a key early event in cachexia. Muscles from tumor-bearing mice exhibited membrane abnormalities accompanied by reduced levels of dystrophin and increased glycosylation on DGC proteins. Wasting was accentuated in tumor mdx mice lacking a DGC but spared in dystrophin transgenic mice that blocked induction of muscle E3 ubiquitin ligases. Furthermore, DGC deregulation correlated positively with cachexia in patients with gastrointestinal cancers. Based on these results, we propose that, similar to muscular dystrophy, DGC dysfunction plays a critical role in cancer-induced wasting

    Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53

    Get PDF
    Cowden syndrome (CS), a Mendelian autosomal-dominant disorder, predisposes to breast, thyroid and other cancers. Germline mutations in phosphatase and tensin homolog (PTEN) have been recently reported in 23% of a large series of classic CS. Here, we validated our small (n = 10) pilot study in a large patient series that germline variations in succinate dehydrogenase genes (SDHx) occur in 8% (49/608) of PTEN mutation-negative CS and CS-like (CSL) individuals (SDHvar+). None of these SDHx variants was found in 700 population controls (P < 0.0001). We then found that SDHx variants also occur in 6% (26/444) of PTEN mutation-positive (PTENmut+) CS/CSL individuals (PTENmut+/SDHvar+). Of 22 PTENmut+/SDHvar+ females, 17 had breast cancers compared with 34/105 PTENmut+ (P < 0.001) or 27/47 SDHvar+ patients (P = 0.06). Notably, individuals with SDHvar+ alone had the highest thyroid cancer prevalence (24/47) compared with PTENmut+ patients (27/105, P = 0.002) or PTENmut+/SDHvar+ carriers (6/22, P = 0.038). Patient-derived SDHvar+ lymphoblastoid cells had elevated cellular reactive oxygen species, highest in PTENmut+/SDHvar+ cells, correlating with apoptosis resistance. SDHvar+ cells showed stabilized and hyperactivated hypoxia inducible factor (HIF)1α signaling. Most interestingly, we also observed the loss of steady-state p53 in the majority of SDHvar+ cells. This loss of p53 was regulated by MDM2-independent NADH quinone oxidoreductase 1-mediated protein degradation, likely due to the imbalance of flavin adenine dinucleotide/nicotinamide adenine dinucleotide in SDHvar+ cells. Our data suggest the potential regulation of HIF1α, p53 and PTEN signaling by mitochondrial metabolism in CS/CSL tumorigenesis. Together, our findings suggest the importance of considering SDHx as candidate predisposing and modifier genes for CS/CSL-related malignancy risks, and a mechanism which suggests ways of therapeutic reversal or prevention

    GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    Correction: Volume12, Issue1 Article Number7354 DOI10.1038/s41467-021-27675-w PublishedDEC 16 2021Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors. Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. Here, the authors conduct a GWAS and suggest protective effect of higher TSH on risk of thyroid cancer and goitre.Peer reviewe

    Author Correction:GWAS of thyroid stimulating hormone highlights the pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    The original version of this article contained an error in the results, in the second paragraph of the subsection entitled “Fine-mapping for potentially causal variants among TSH loci”, in which effect sizes for two variants were incorrectly reported

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors
    corecore