772 research outputs found

    Chapter 15 - National and sub-national policies and institutions

    Get PDF
    This chapter assesses national and sub-national mitigation policies and their institutional settings. There has been a marked increase in national policies and legislation on climate change since the AR4 with a diversity of approaches and a multiplicity of objectives (see Section 15.2). However, Figure 1.9 of Chapter 1 suggests that these policies, taken together, have not yet achieved a substantial deviation in emissions from the past trend. Limiting concentrations to levels that would be consistent with a likely probability of maintaining temperature increases below 2 degrees C this century (scenarios generally in the range of 430-480 ppmv CO2eq) would require that emissions break from these trends and be decreased substantially. In contrast, concentrations exceed 1000 ppmv CO2eq by 2100 in many baseline scenarios (that is, scenarios without additional efforts to reduce emissions). The literature on mitigation scenarios provides a wide range of CO2 shadow price levels consistent with these goals, with estimates of less than US50/tCO2in2020inmanystudiesandexceedingUS50/tCO2 in 2020 in many studies and exceeding US100/tCO2 in others, assuming a globally-efficient and immediate effort to reduce emissions. These shadow prices exhibit a strongly increasing trend thereafter. Policies and instruments are assessed in this light. Section 15.2 assesses the role of institutions and governance. Section 15.3 lays out the classification of policy instruments and packages, while 15.4 discusses the methodologies used to evaluate policies and institutions. The performance of various policy instruments and measures are individually assessed in Sections 15.5 and 15.6. The two main types of economic instruments are price instruments, that is, taxes and subsidies (including removal of subsidies on fossil fuels), and quantity instruments - emission-trading systems. These are assessed in Sections 15.5.2 and 15.5.3 respectively. An important feature of both these instruments is that they can be applied at a very broad, economy-wide scale. This is in contrast to the regulation and information policies and voluntary agreements which are usually sector- specific. These policies are assessed in Sections 15.5.4, 15.5.5, and 15.5.7. Government provision and planning is discussed in 15.5.6. The next section, 15.6, provides a focused discussion on technology policy including research and development and the deployment and diffusion of clean energy technologies. In addition to technology policy, longer-term effects of the policies assessed in Section 15.5 are addressed in Section 15.6. Both these sections, 15.5 and 15.6, bring together lessons from policies and policy packages used at the sectoral level from Chapters 7 (Energy), 8 (Transport), 9 (Buildings), 10 (Industry), 11 (Agriculture, Forestry and Land Use) and Chapter 12 (Human Settlements, Infrastructure, and Spatial Planning). The following sections further assess the interaction among policy instruments, as they are not usually used in isolation, and the impacts of particular instruments depend on the entire package of policies and the institutional context. Section 15.7 reviews interactions, both beneficial and harmful, that may not have been planned. The presence of such interactions is in part a consequence of the multi-jurisdictional nature of climate governance as well as the use of multiple policy instruments within a jurisdiction. Section 15.8 examines the deliberate linkage of policies across national and sub-national jurisdictions. Other key issues are further discussed in dedicated sections. They are: the role of stakeholders including non-governmental organizations (NGOs) (15.9), capacity building (15.10), links between adaptation and mitigation policies (15.11), and investment and finance (15.12). Gaps in knowledge are collected in 15.13

    Estimates of dispersion from clustered-drifter deployments on the southern flank of Georges Bank

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 53 (2006): 2501-2519, doi:10.1016/j.dsr2.2006.08.004.Data from 16 clustered-drifter deployments are used to examine horizontal dispersion on the southern flank of Georges Bank. The spreading rates of all clusters have an average of 1.6 km d-1 with a standard deviation of 1.8 km d-1. Both "effective" and "apparent" diffusivities are calculated for each cluster. Their ranges (i.e., -54 to 757 m2 s-1 for effective diffusivity) are related to differences in cluster size and proximity to the tidal mixing front. Cross-bank convergence is documented for nearly 40% of the clusters. This occurs especially for clusters with centroids within 10 km of the tidal mixing front location, as deduced from conductivity, temperature, and depth transects (CTD) conducted concurrently with the cluster deployments. Estimates of turbulent dispersion (distinct from shear effects) are derived by the method of Okubo and Ebbysmeyer (Okubo, A. and Ebbesmeyer, C.C., 1976. Determination of vorticity, divergence, and deformation rates from analysis of drogue observations. Deep-Sea Res., 23, 349-352). The results reveal that the effects of horizontal shear are important in spreading of larger drifter clusters. Often the impact of shear is evidenced by the track of a lone drifter that separates from a cluster as it is entrained into the current of the shelf-edge front or the tidal mixing front. Cluster dispersion is time dependent as evidenced by a significant modulation of cluster size at the M2 tidal frequency. This modulation is due to the spatial variation of tidal currents over the southern flank of Georges Bank and is closely reproduced by immersing drifter clusters into the flow field of a Georges Bank tidal model.The work carried out at WHOI was supported by the U.S. National Science Foundation under grants OCE-98-06498, OCE-96-32357, OCE98-06397 and OCE02-27679. The effort at the Woods Hole NMFS was funded through a grant from the NOAA Coastal Ocean Program

    Electronic states and optical properties of GaAs/AlAs and GaAs/vacuum superlattices by the linear combination of bulk bands method

    Full text link
    The linear combination of bulk bands method recently introduced by Wang, Franceschetti and Zunger [Phys. Rev. Lett.78, 2819 (1997)] is applied to a calculation of energy bands and optical constants of (GaAs)n_n/(AlAs)n_n and (GaAs)n_n/(vacuum)n_n (001) superlattices with n ranging from 4 to 20. Empirical pseudopotentials are used for the calculation of the bulk energy bands. Quantum-confined induced shifts of critical point energies are calculated and are found to be larger for the GaAs/vacuum system. The E1E_1 peak in the absorption spectra has a blue shift and splits into two peaks for decreasing superlattice period; the E2E_2 transition instead is found to be split for large-period GaAs/AlAs superlattices. The band contribution to linear birefringence of GaAs/AlAs superlattices is calculated and compared with recent experimental results of Sirenko et al. [Phys. Rev. B 60, 8253 (1999)]. The frequency-dependent part reproduces the observed increase with decreasing superlattice period, while the calculated zero-frequency birefringence does not account for the experimental results and points to the importance of local-field effects.Comment: 10 pages, 11 .eps figures, 1 tabl

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays Bc→Ds(1968)ℓℓˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and Bc→Ds∗(2317)ℓℓˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore