9 research outputs found
The Spatial and Temporal Deployment of Voluntary Attention across the Visual Field
Several studies have addressed the question of the time it takes for attention to shift from one position in space to another. Here we present a behavioural paradigm which offers a direct access to an estimate of voluntary shift time by comparing, in the same task, a situation in which subjects are required to re-engage their attention at the same spatial location with a situation in which they need to shift their attention to another location, all other sensory, cognitive and motor parameters being equal. We show that spatial attention takes on average 55 ms to voluntarily shift from one hemifield to the other and 38 ms to shift within the same hemifield. In addition, we show that across and within hemifields attentional processes are different. In particular, attentional spotlight division appears to be more difficult to operate within than across hemifields
Spatial and Temporal Dynamics of Attentional Guidance during Inefficient Visual Search
Spotting a prey or a predator is crucial in the natural environment and relies on the ability to extract quickly pertinent visual information. The experimental counterpart of this behavior is visual search (VS) where subjects have to identify a target amongst several distractors. In difficult VS tasks, it has been found that the reaction time (RT) is influenced by salience factors, such as the target-distractor similarity, and this finding is usually regarded as evidence for a guidance of attention by preattentive mechanisms. However, the use of RT measurements, a parameter which depends on multiple factors, allows only very indirect inferences about the underlying attentional mechanisms. The purpose of the present study was to determine the influence of salience factors on attentional guidance during VS, by measuring directly attentional allocation. We studied attention allocation by using a dual covert VS task in subjects who had 1) to detect a target amongst different items and 2) to report letters briefly flashed inside those items at different delays. As predicted, we showed that parallel processes guide attention towards the most relevant item by virtue of both goal-directed and stimulus-driven factors, and we demonstrated that this attentional selection is a prerequisite for target detection. In addition, we show that when the target is characterized by two features (conjunction VS), the goal-directed effects of both features are initially combined into a unique salience value, but at a later stage, grouping phenomena interact with the salience computation, and lead to the selection of a whole group of items. These results, in line with Guided Search Theory, show that efficient and rapid preattentive processes guide attention towards the most salient item, allowing to reduce the number of attentional shifts needed to find the target
Recommended from our members
No evidence for loss of short-wavelength sensitive cone photoreceptors in normal ageing of the primate retina
In old world primates including humans, cone photoreceptors are classified according to their maximal sensitivity at either short (S, blue), middle (M, green) or long (L, red) wavelengths. Colour discrimination studies show that the S-cone pathway is selectively affected by age and disease, and psychophysical models implicate their loss. Photoreceptors have high metabolic demand and are susceptible to age or disease-related losses in oxygen and nutrient supply. Hence 30% of rods are lost over life. While comparable losses are not seen in cones, S-cones comprise less than 10% of the cone population, so significant loss would be undetected in total counts. Here we examine young and aged primate retinae stained to distinguish S from M/L-cones. We show there is no age-related cone loss in either cone type and that S-cones are as regularly distributed in old as young primates. We propose that S-cone metabolism is less flexible than in their M/L counterparts, making them more susceptible to deficits in normal cellular function. Hypoxia is a feature of the ageing retina as extracellular debris accumulates between photoreceptors and their blood supply which likely impacts S-cone function. However, that these cells remain in the ageing retina suggests the potential for functional restoration