865 research outputs found

    Influence of honeycomb structures on straight-through labyrinth seal aerodynamics

    Get PDF
    Shroud cavities in aero engines are typically formed by a labyrinth seal between the rotating turbine shroud and the stationary casing wall. To mitigate rub-in and reduce weight, the casing often features honeycomb structures above the rotor seal fins. In this paper, the aerodynamic performance of such honeycomb structures is experimentally investigated using a rotating test rig featuring both smooth and honeycomb-tapered casing walls. Measurements show that the discharge coefficient decreases for the honeycomb configuration while losses and subsequent windage heating of the flow increase. A variation in rotational speed reveals additional sensitivities to the local flow field in the swirl chamber. Numerical simulations are conducted and validated using the experiments. A good agreement between the prediction and measurements of the jet via the evolution of pressure across the sealing fins is identified. In contrast, the prediction of losses and integral parameters reveals larger deficits. Empirical correlations from available literature satisfactorily predict the leakage mass flow rate if rotation is low and if the casing is smooth. High rotation and the presence of honeycombs, however, prove challenging and reveal the potential for further improvements. We propose a simple a-posteriori correction that can capture the effect of honeycomb structures on seal discharge by accounting for changes in momentum and flow area

    Unsteady flow phenomena in turbine shroud cavities

    Get PDF
    This paper presents those flow parameters at which coherent structures appear in the blade tip cavities of shrouded turbine blades. To the authors’ knowledge, this is reported for the first time in the open literature. The unsteady flow in a shroud cavity is analysed based on experimental data recorded in a labyrinth seal test rig. The unsteady static wall pressure in the shroud cavity inlet and outlet is measured using time-resolving pressure sensors. Sensors are located at staggered circumferential positions to allow cross-correlation between signals. The unsteady pressure signals are reduced using Fourier analysis and cross-correlation in combination with digital filters. Based on the data, a theory is formulated explaining the phenomena reflected in the measurements. The results suggest that pressure fluctuations with distinct numbers of nodes are rotating in the shroud cavity outlet. Moreover, modes with different node numbers appear to be super-imposed, rotating at a common speed in circumferential direction. The pressure fluctuations are not found at all operating points. Further analysis indicates that the pressure fluctuations are present at operating points matching distinct parameters correlating with the cavity flow coefficient. Unsteady RANS simulations predict similar flow structures for the design operating point of the test rig

    R&D Paths of Pixel Detectors for Vertex Tracking and Radiation Imaging

    Full text link
    This report reviews current trends in the R&D of semiconductor pixellated sensors for vertex tracking and radiation imaging. It identifies requirements of future HEP experiments at colliders, needed technological breakthroughs and highlights the relation to radiation detection and imaging applications in other fields of science.Comment: 17 pages, 2 figures, submitted to the European Strategy Preparatory Grou

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    The twilight of the Liberal Social Contract? On the Reception of Rawlsian Political Liberalism

    Get PDF
    This chapter discusses the Rawlsian project of public reason, or public justification-based 'political' liberalism, and its reception. After a brief philosophical rather than philological reconstruction of the project, the chapter revolves around a distinction between idealist and realist responses to it. Focusing on political liberalism’s critical reception illuminates an overarching question: was Rawls’s revival of a contractualist approach to liberal legitimacy a fruitful move for liberalism and/or the social contract tradition? The last section contains a largely negative answer to that question. Nonetheless the chapter's conclusion shows that the research programme of political liberalism provided and continues to provide illuminating insights into the limitations of liberal contractualism, especially under conditions of persistent and radical diversity. The programme is, however, less receptive to challenges to do with the relative decline of the power of modern states

    Constitutivism

    Get PDF
    A brief explanation and overview of constitutivism

    Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL

    Get PDF
    Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT–PCR, and RACE–PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lepob background, the diabetogenic Zfp69SJL allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes

    Philosophy of action

    Get PDF
    The philosophical study of human action begins with Plato and Aristotle. Their influence in late antiquity and the Middle Ages yielded sophisticated theories of action and motivation, notably in the works of Augustine and Aquinas.1 But the ideas that were dominant in 1945 have their roots in the early modern period, when advances in physics and mathematics reshaped philosophy

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore