1,565 research outputs found

    Special Section Guest Editorial: Detectors for Astronomy and Cosmology

    Get PDF
    This guest editorial summarizes the Special Section on Detectors for Astronomy and Cosmology

    Higgs boson hadronic branching ratios at the ILC

    Full text link
    We present a study of the Higgs boson decay branching ratios to bbˉb\bar{b}, ccˉc\bar{c} and gluons, one of the cornerstones of the physics program at the International Linear Collider (ILC). A standard model Higgs boson of 120\,GeV mass, produced in the Higgs-strahlung process at s=250\sqrt{s} = 250\,GeV was investigated using the full detector simulation and reconstruction procedures. The analysis was performed in the framework of the Silicon Detector (SiD) concept with full account of inclusive standard model backgrounds. The selected decay modes contained two heavy flavour jets in the final state and required excellent flavour tagging through precise reconstruction of interaction and decay vertices in the detector. A new signal discrimination technique using correlations of neural network outputs was used to determine the branching ratios and estimate their uncertainties, 4.8\%, 8.4\% and 12.2\% for bbˉb\bar{b}, ccˉc\bar{c} and gluons respectively.Comment: 9 Pages, 5 figures and 5 table

    Micromotion-Synchronized Pulsed Doppler Cooling of Trapped Ions

    Full text link
    We propose and demonstrate a new method for Doppler cooling trapped-ion crystals where the distribution of micromotion amplitudes may be large and uneven. The technique uses pulses of Doppler cooling light synchronized with the trap RF that selectively target ions when their velocity is near a node, leading to more uniform cooling across a crystal by a single tone of cooling light. We lay out a theoretical framework that describes where this technique is practical, and provide a simple experimental demonstration

    Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    Full text link
    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.Comment: 12 page

    Two-photon amplitude interferometry for precision astrometry

    Full text link
    Improved quantum sensing of photon wave-functions could provide high resolution observations in the optical benefiting numerous fields, including general relativity, dark matter studies, and cosmology. It has been recently proposed that stations in optical interferometers would not require a phase-stable optical link if instead sources of quantum-mechanically entangled pairs could be provided to them, potentially enabling hitherto prohibitively long baselines. A new refinement of this idea is developed, in which two photons from different sources are interfered at two separate and decoupled stations, requiring only a slow classical information link between them. We rigorously calculate the observables and contrast this new interferometric technique with the Hanbury Brown & Twiss intensity interferometry. We argue this technique could allow robust high-precision measurements of the relative astrometry of the two sources. A basic calculation suggests that angular precision on the order of 10ÎĽ10\muas could be achieved in a single night's observation of two bright stars.Comment: 18 pages, 4 figures; submitted to Physical Review

    ISIS2: Pixel Sensor with Local Charge Storage for ILC Vertex Detector

    Full text link
    ISIS (In-situ Storage Imaging Sensor) is a novel CMOS sensor with multiple charge storage capability developed for the ILC vertex detector by the Linear Collider Flavour Identification (LCFI) collaboration. This paper reports test results for ISIS2, the second generation of ISIS sensors implemented in a 0.18 micron CMOS process. The local charge storage and charge transfer were unambiguously demonstrated.Comment: 11 pages, 16 figures, to be included in the Proceedings of International Linear Collider Workshop 201
    • …
    corecore