168 research outputs found

    Progress in 3D Silicon Radiation Detectors

    Get PDF
    In the past few years, there has been an increasing interest toward 3D silicon radiation detectors. Owing to their unique architecture, 3D detectors provide a remarkable radiation hardness at relatively low bias voltage (hence low power dissipation), that makes them the most appealing solution for use in the innermost layers of tracking detectors in High Energy Physics (HEP) experiments. Besides this primary application, the use of 3D sensor technology has been extended also to other fields, like thermal neutron detection and microdosimetry for proton and ion therapy. In this paper, we will review the state of the art and on going efforts in 3D detectors, covering the main design and technological issues, as well as selected results from the experimental characterization and TCAD simulation.publishedVersio

    Improving ALD-Al2O3 Surface Passivation of Si Utilizing Pre-Existing SiOx

    Get PDF
    Al 2 O 3 has rapidly become the surface passivation material of choice for p + layers of solar cells because of its high negative fixed charge, good long-term and thermal stability, and no parasitic absorption. In this article, the surface saturation current density, fixed charge, and interface state density are compared for Al 2 O 3 deposited on Si substrates where the pre-existing out-of-the-box SiO x layer was not removed, with substrates where the SiO x was removed by hydrofluoric acid. The depositions are performed by atomic layer deposition at temperatures in the 150–300 °C range, using trimethylaluminium, H 2 O, and O 3 as precursors. The samples where the native oxide was not removed achieve a higher level of surface passivation for every tested deposition temperature, with the sample deposited at 200 °C exhibiting a surface saturation current density of only 0.9 fA/cm 2 after annealing, a fixed charge of −4.2 × 10 12 cm −2 , and a density of interface states of 9.8 × 10 9 cm −2 eV −1 . Capacitance and conductance voltage characteristics reveal a strong correlation between the surface saturation current density and the density of interface states and fixed charges. It is also determined that the long-term stability of the surface passivation depends on the deposition temperature, with higher deposition temperatures resulting in improved long-term stability. The results indicate that H-terminated Si prior to Al 2 O 3 deposition may have a detrimental effect on the surface passivation.publishedVersio

    Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    Full text link
    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.Comment: 14 page

    Predicting the Biological Effects of Human Salivary Gland Tumour Cells for Scanned 4He-, 12C-, 16O-, and 20Ne-Ion Beams Using an SOI Microdosimeter

    Get PDF
    Experimental microdosimetry along with the microdosimetric kinetic (MK) model can be utilized to predict the biological effects of ions. To predict the relative biological effectiveness (RBE) of ions and the survival fraction (SF) of human salivary gland tumour (HSGc-C5) cells, microdosimetric quantities measured by a silicon-on-insulator (SOI) MicroPlus-mushroom microdosimeter along the spread-out Bragg peak (SOBP) delivered by pencil beam scanning of 4He, 12C, 16O, and 20Ne ions were used. The MK model parameters of HSGc-C5 cells were obtained from the best fit of the calculated SF for the different linear energy transfer (LET) of these ions and the formerly reported in vitro SF for the same LET and ions used for calculations. For a cube-shaped target of 10 × 10 × 6 cm3, treatment plans for 4He, 12C, 16O, and 20Ne ions were produced with proprietary treatment planning software (TPS) aiming for 10% SF of HSGc-C5 cells over the target volume and were delivered to a polymethyl methacrylate (PMMA) phantom. Afterwards, the saturation-corrected dose-mean lineal energy derived based on the measured microdosimetry spectra, along with the physical dose at various depths in PMMA phantoms, was used for the estimation of the SF, RBE, and RBE-weighted dose using the MK model. The predicted SF, RBE, and the RBE-weighted dose agreed with what was planned by the TPS within 3% at most depths for these ions.publishedVersio

    Radiation hard 3D silicon pixel sensors for use in the ATLAS detector at the HL-LHC

    Get PDF
    The High Luminosity LHC (HL-LHC) upgrade requires the planned Inner Tracker (ITk) of the ATLAS detector to tolerate extremely high radiation doses. Specifically, the innermost parts of the pixel system will have to withstand radiation fluences above 1 × 1016 neqcm-2. Novel 3D silicon pixel sensors offer a superior radiation tolerance compared to conventional planar pixel sensors, and are thus excellent candidates for the innermost parts of the ITk. This paper presents studies of 3D pixel sensors with pixel size 50 × 50 μm2 mounted on the RD53A prototype readout chip. Following a description of the design and fabrication steps, Test Beam results are presented for unirradiated as well as heavily irradiated sensors. For particles passing at perpendicular incidence, it is shown that average efficiencies above 96% are reached for sensors exposed to fluences of 1 × 1016 neqcm-2 when biased to 80 V.publishedVersio

    3D silicon detectors for neutron imaging applications

    Get PDF
    Neutron detection is of great importance in many fields spanning from scientific research, to nuclear science, and to medical application. The development of silicon-based neutron detectors with enhanced neutron detection efficiency can offer several advantages such as spatial resolution, enhanced dynamic range and background discrimination. In this work, increased detection efficiency is pursued by fabricating high aspect ratio 3D micro-structures filled with neutron converting materials (B4C) on planar silicon detectors. An in-depth feasibility study was carried out in all aspects of the sensor fabrication technology. Passivation of the etched structures was studied in detail, to ensure good electrical performance. The conformal deposition of B4C with a newly developed process showed excellent results. Preliminary electrical characterisation of the completed devices is promising, and detectors have been mounted on dedicated boards in view of the upcoming tests with neutrons.publishedVersio

    Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    Full text link
    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are here discussed.Comment: 20 pages, 14 figures, presented at 7th International "Hiroshima" Symposium on Development and Applications of Semiconductor Tracking Devices International Conference Center Hiroshima, Japan, Aug. 29-Sep.1, 200

    Thin Silicon Microdosimeter utilizing 3D MEMS Fabrication Technology: Charge Collection Study and its application in mixed radiation fields

    Get PDF
    New 10-μm-thick silicon microdosimeters utilizing 3-D technology have been developed and investigated in this paper. The TCAD simulations were carried out to understand the electrical properties of the microdosimeters\u27 design. A charge collection study of the devices was performed using 5.5-MeV He2+ ions which were raster scanned over the surface of the detectors and the charge collection median energy maps were obtained and the detection yield was also evaluated. The devices were tested in a 290 MeV/u carbon ion beam at the Heavy Ion Medical Accelerator in Chiba (HIMAC) in Japan. Based on the microdosimetric measurements, the quality factor and dose equivalent out of field were obtained in a mixed radiation field mimicking the radiation environment for spacecraft in deep space
    • …
    corecore