509 research outputs found

    Non-thermal emission processes in massive binaries

    Full text link
    In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy and Astrophysics Review. Astronomy and Astrophysics Review, in pres

    The Effect of Particulate Air Pollution on Emergency Admissions for Myocardial Infarction: A Multicity Case-Crossover Analysis

    Get PDF
    Recently, attention has focused on whether particulate air pollution is a specific trigger of myocardial infarction (MI). The results of several studies of single locations assessing the effects of ambient particular matter on the risk of MI have been disparate. We used a multicity case-crossover study to examine risk of emergency hospitalization associated with fine particulate matter (PM) with aerodynamic diameter < 10 μm (PM(10)) for > 300,000 MIs during 1985–1999 among elderly residents of 21 U.S. cities. We used time-stratified controls matched on day of the week or on temperature to detect possible residual confounding by weather. Overall, we found a 0.65% [95% confidence interval (CI), 0.3–1.0%] increased risk of hospitalization for MI per 10 μg/m(3) increase in ambient PM(10) concentration. Matching on apparent temperature yielded a 0.64% increase in risk (95% CI, 0.1–1.2%). We found that the effect size for PM(10) doubled for subjects with a previous admission for chronic obstructive pulmonary disease or a secondary diagnosis of pneumonia, although these differences did not achieve statistical significance. There was a weaker indication of a larger effect on males but no evidence of effect modification by age or the other diagnoses. We also found that the shape of the exposure–response relationship between MI hospitalizations and PM(10) is almost linear, but with a steeper slope at levels of PM(10) < 50 μg/m(3). We conclude that increased concentrations of ambient PM(10) are associated with increased risk of MI among the elderly

    The Gaia-ESO survey: Matching chemodynamical simulations to observations of the Milky Way

    Get PDF
    The typical methodology for comparing simulated galaxies with observational surveys is usually to apply a spatial selection to the simulation to mimic the region of interest covered by a comparable observational survey sample. In this work we compare this approach with a more sophisticated post-processing in which the observational uncertainties and selection effects (photometric, surface gravity and effective temperature) are taken into account. We compare a `solar neighbourhood analogue' region in a model Milky Way-like galaxy simulated with RAMSES-CH with fourth release Gaia-ESO survey data. We find that a simple spatial cut alone is insufficient and that observational uncertainties must be accounted for in the comparison. This is particularly true when the scale of uncertainty is large compared to the dynamic range of the data, e.g. in our comparison, the [Mg/Fe] distribution is affected much more than the more accurately determined [Fe/H] distribution. Despite clear differences in the underlying distributions of elemental abundances between simulation and observation, incorporating scatter to our simulation results to mimic observational uncertainty produces reasonable agreement. The quite complete nature of the Gaia-ESO survey means that the selection function has minimal impact on the distribution of observed age and metal abundances but this would become increasingly more important for surveys with narrower selection functions

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    The Gaia-ESO Survey: The inner disk, intermediate-age open cluster Trumpler 23

    Get PDF
    Milky Way open clusters are very diverse in terms of age, chemical composition, and kinematic properties. Intermediate-age and old open clusters are less common, and it is even harder to find them inside the solar Galactocentric radius, due to the high mortality rate and strong extinction inside this region. NGC 6802 is one of the inner disk open clusters (IOCs) observed by the GaiaGaia-ESO survey (GES). This cluster is an important target for calibrating the abundances derived in the survey due to the kinematic and chemical homogeneity of the members in open clusters. Using the measurements from GaiaGaia-ESO internal data release 4 (iDR4), we identify 95 main-sequence dwarfs as cluster members from the GIRAFFE target list, and eight giants as cluster members from the UVES target list. The dwarf cluster members have a median radial velocity of 13.6±1.913.6\pm1.9 km s1^{-1}, while the giant cluster members have a median radial velocity of 12.0±0.912.0\pm0.9 km s1^{-1} and a median [Fe/H] of 0.10±0.020.10\pm0.02 dex. The color-magnitude diagram of these cluster members suggests an age of 0.9±0.10.9\pm0.1 Gyr, with (mM)0=11.4(m-M)_0=11.4 and E(BV)=0.86E(B-V)=0.86. We perform the first detailed chemical abundance analysis of NGC 6802, including 27 elemental species. To gain a more general picture about IOCs, the measurements of NGC 6802 are compared with those of other IOCs previously studied by GES, that is, NGC 4815, Trumpler 20, NGC 6705, and Berkeley 81. NGC 6802 shows similar C, N, Na, and Al abundances as other IOCs. These elements are compared with nucleosynthetic models as a function of cluster turn-off mass. The α\alpha, iron-peak, and neutron-capture elements are also explored in a self-consistent way

    Bcl-2 and β1-integrin predict survival in a tissue microarray of small cell lung cancer.

    Get PDF
    INTRODUCTION: Survival in small cell lung cancer (SCLC) is limited by the development of chemoresistance. Factors associated with chemoresistance in vitro have been difficult to validate in vivo. Both Bcl-2 and β(1)-integrin have been identified as in vitro chemoresistance factors in SCLC but their importance in patients remains uncertain. Tissue microarrays (TMAs) are useful to validate biomarkers but no large TMA exists for SCLC. We designed an SCLC TMA to study potential biomarkers of prognosis and then used it to clarify the role of both Bcl-2 and β(1)-integrin in SCLC. METHODS: A TMA was constructed consisting of 184 cases of SCLC and stained for expression of Bcl-2 and β(1)-integrin. The slides were scored and the role of the proteins in survival was determined using Cox regression analysis. A meta-analysis of the role of Bcl-2 expression in SCLC prognosis was performed based on published results. RESULTS: Both proteins were expressed at high levels in the SCLC cases. For Bcl-2 (n=140), the hazard ratio for death if the staining was weak in intensity was 0.55 (0.33-0.94, P=0.03) and for β(1)-integrin (n=151) was 0.60 (0.39-0.92, P=0.02). The meta-analysis showed an overall hazard ratio for low expression of Bcl-2 of 0.91(0.74-1.09). CONCLUSIONS: Both Bcl-2 and β(1)-integrin are independent prognostic factors in SCLC in this cohort although further validation is required to confirm their importance. A TMA of SCLC cases is feasible but challenging and an important tool for biomarker validation

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
    corecore