15 research outputs found

    Phylogenetic Development of Cardiovascular Control

    Get PDF

    The Effects of the Carotid Sinus Reflex on Cardiovascular Function

    Get PDF

    REFERENCES

    No full text

    Chapter 10 Heat transfer

    No full text

    Owen, Rosenberg, Sassoon and Edward Thomas

    No full text

    Heat Transfer

    No full text

    Full-orbit and drift calculations of fusion product losses due to explosive fishbones on JET

    No full text
    Fishbones are ubiquitous in high-performance JET plasmas and are typically considered to be unimportant for scenario design. However, during recent high-performance hybrid scenario experiments, sporadic and explosive fishbone oscillations with sawtooth reconnection were observed coinciding with reduced performance and a main chamber hotspot. Fast ion loss diagnostics showed fusion products ejected from the plasma by the fishbones. We present calculations of the perturbed motion of non-resonant fusion products in the presence of fishbones assuming a fixed linear mode structure and frequency. Using careful reconstruction of the equilibrium and measurements of the perturbation, we show that the measured fishbone spatial structure in these experiments can be well modelled as a linear MHD internal kink mode. Both drift and full-orbit calculations predict losses of fusion products at the same location of the observed hotspot, however the calculated energy content of those losses is negligible and cannot be contributing significantly. The fast ions responsible for the hotspot and the reason for their loss both remain unexplained

    Full-orbit and drift calculations of fusion product losses due to explosive fishbones on JET

    No full text
    Fishbones are ubiquitous in high-performance JET plasmas and are typically considered to be unimportant for scenario design. However, during recent high-performance hybrid scenario experiments, sporadic and explosive fishbone oscillations with sawtooth reconnection were observed coinciding with reduced performance and a main chamber hotspot. Fast ion loss diagnostics showed fusion products ejected from the plasma by the fishbones. We present calculations of the perturbed motion of non-resonant fusion products in the presence of fishbones assuming a fixed linear mode structure and frequency. Using careful reconstruction of the equilibrium and measurements of the perturbation, we show that the measured fishbone spatial structure in these experiments can be well modelled as a linear MHD internal kink mode. Both drift and full-orbit calculations predict losses of fusion products at the same location of the observed hotspot, however the calculated energy content of those losses is negligible and cannot be contributing significantly. The fast ions responsible for the hotspot and the reason for their loss both remain unexplained

    Measurement of the Λ(b)0\Lambda(b)0 lifetime in pp collisions at s=7\sqrt{s} = 7 TeV

    Get PDF
    A measurement of the Lambda(b)0 lifetime using the decay Lambda(b)0 to J/Psi Lambda in proton-proton collisions at sqrt(s)=7 TeV is presented. The data set, corresponding to an integrated luminosity of about 5 inverse femtobarns, was recorded with the CMS experiment at the Large Hadron Collider using triggers that selected dimuon events in the J/Psi mass region. The Lambda(b)0 lifetime is measured to be 1.503 +/- 0.052 (stat.) +/- 0.031 (syst.) ps

    Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model

    Get PDF
    The RAPTOR code is a control-oriented core plasma profile simulator with various applications in control design and verification, discharge optimization and real-time plasma simulation. To date, RAPTOR was capable of simulating the evolution of poloidal flux and electron temperature using empirical transport models, and required the user to input assumptions on the other profiles and plasma parameters. We present an extension of the code to simulate the temperature evolution of both ions and electrons, as well as the particle density transport. A proof-of-principle neural-network emulation of the quasilinear gyrokinetic QuaLiKiz transport model is coupled to RAPTOR for the calculation of first-principle-based heat and particle turbulent transport. These extended capabilities are demonstrated in a simulation of a JET discharge. The multi-channel simulation requires ∼0.2 s to simulate 1 second of a JET plasma, corresponding to ∼20 energy confinement times, while predicting experimental profiles within the limits of the transport model. The transport model requires no external inputs except for the boundary condition at the top of the H-mode pedestal. This marks the first time that simultaneous, accurate predictions of Te, Tiand nehave been obtained using a first-principle-based transport code that can run in faster-than-real-time for present-day tokamaks
    corecore