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Abstract
The RAPTOR code is a control-oriented core plasma profile simulator with various applications 
in control design and verification, discharge optimization and real-time plasma simulation. 
To date, RAPTOR was capable of simulating the evolution of poloidal flux and electron 
temperature using empirical transport models, and required the user to input assumptions on 
the other profiles and plasma parameters. We present an extension of the code to simulate the 
temperature evolution of both ions and electrons, as well as the particle density transport. A 
proof-of-principle neural-network emulation of the quasilinear gyrokinetic QuaLiKiz transport 
model is coupled to RAPTOR for the calculation of first-principle-based heat and particle 
turbulent transport. These extended capabilities are demonstrated in a simulation of a JET 
discharge. The multi-channel simulation requires  ∼0.2 s to simulate 1 second of a JET plasma, 
corresponding to  ∼20 energy confinement times, while predicting experimental profiles within 
the limits of the transport model. The transport model requires no external inputs except 
for the boundary condition at the top of the H-mode pedestal. This marks the first time that 
simultaneous, accurate predictions of Te, Ti and ne have been obtained using a first-principle-
based transport code that can run in faster-than-real-time for present-day tokamaks.

Keywords: integrated tokamak simulation, real-time control, machine learning,  
tokamak profiles, tokamak transport
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1.  Introduction

For future, larger tokamaks, as well as for reactor applica-
tions, it will be increasingly important to thoroughly pre-
pare and optimize discharges before they are executed. This 
requires simulation tools that can accurately and rapidly sim-
ulate the time-evolution of the plasma. In addition, testing, 
preparation and verification of plasma control systems benefit 
from tokamak simulation models that can execute in real-time 
[1]. For such purposes, it is beneficial to have a fast, control-
oriented simulation code, capable of evolving the quantities of 
interest as rapidly as possible.

One control-oriented simulator for the core plasma trans-
port evolution is the RAPTOR code. Presently, the code has 
two main applications. Used off-line, it acts as a fast transport 
simulator capable of simulating an entire plasma discharge in 
a few seconds on a single core of a standard PC. This makes 
it highly suited for discharge analysis and preparation, as well 
as automated optimization of plasma discharges [2–4], or for 
design of feedback controllers [5, 6]. Other codes aimed at fast 
tokamak simulation for this application include the METIS 
code, part of the CRONOS suite [7] and the control-design-
oriented transport simulator developed at Lehigh University 
[8].

Another important application of a control-oriented simu-
lator, which is so far unique to RAPTOR, is its use as part of a 
tokamak plasma control system. In this application, it is used 
in conjunction with a state observer algorithm, specifically 
an Extended Kalman Filter [9], to merge diagnostic measure-
ments with model-based prediction in real-time. Additionally, 
real-time predictions of the expected plasma evolution, also 
calculated in the control system, can be used for real-time 
monitoring of the plasma performance. In this function, 
RAPTOR has been implemented in the control systems of 
TCV [10], ASDEX-Upgrade [11] and RFX [12].

The version of RAPTOR used so far was capable of simu-
lating the coupled evolution of poloidal magnetic flux (current 
diffusion) and electron temperature Te, requiring user-defined 
assumptions on the other profiles. In this paper we present the 
extension of the code to allow simultaneous simulations of Te, 
Ti, ne and other particle density species, and demonstrate for 
the first time the capability to predict core kinetic profiles in 
real-time.

When predicting the evolution of temperature and particle 
density, the result strongly depends on the thermal conduc-
tivity and particle diffusion and pinch terms. Direct numerical 
simulation of turbulent fluxes within a nonlinear gyrokinetic 
framework (e.g. gene [13] or GYRO [14]) shows increas-
ingly routine agreement between predictions and experiments. 
However, the computational cost—  ∼  104 CPUh for fluxes at 
a single radius for a single time point, at ion-scales only—is 
prohibitive for routine profile prediction applications.

The quasilinear approximation for transport prediction 
provides significant computational speed-up, while still repro-
ducing nonlinear simulations over a wide range of parameter 
space. Examples are QuaLiKiz (see [15, 16], and references 
therein), and TGLF [17, 18]. These transport models are pres-
ently used routinely for scenario interpretation and prediction 

in integrated modelling. However, the computation cost is then 
still a few seconds for fluxes at a single radius, corresponding 
to  ∼50CPUh per second of simulated plasma evolution for 
JET. While 6 orders of magnitude faster than nonlinear simu-
lations, it is still too slow for real-time computation.

Therefore, earlier versions of RAPTOR used empirical 
models for the thermal conductivity to predict the temper
ature profile evolution. By empirically tuning the various 
parameters of the transport models for a given operational 
regime, experimental results could be adequately matched, for 
example simulating entire discharges for ASDEX-Upgrade 
and TCV [4]. For applications in real-time control design for a 
particular experiment, with a known plasma scenario, this was 
sufficient. However, if we wish to predict the core profiles in 
a wide range of the operational space, for several devices and 
for future tokamaks without having to re-tune such param
eters, transport models with better predictive capabilities are 
required, while still being sufficiently fast to be used in con-
trol-oriented applications.

One way to achieve this is to use neural networks to emu-
late the results of first-principle-based turbulent transport 
predictions. Model output databases are compiled with inputs 
spanning a portion of the experimentally relevant parameter 
space. The neural network then learns the mapping from 
code inputs to outputs. The speed of the quasilinear models 
allows for the production of sufficiently large training sets 
for this application. A first demonstration of this approach 
was shown in [19], where QuaLiKiz was emulated within a 
restricted 4D input space, where each input was varied over 
an experimentally relevant range (corresponding to  ∼105 
points in total). While useful as a demonstration, the version 
of the transport model used in [19] assumed adiabatic elec-
trons and returned only electron heat transport coefficients. 
In the present paper, we have extended this proof-of-principle 
neural network transport model to include kinetic electrons. 
This updated transport model—named QLKNN-4Dkin—
now predicts both electron and ion heat fluxes, as well as 
electron particle diffusion and pinch terms. Impurity trans-
port is not included in this proof-of-principle model. More 
recently, a neural network was used to emulate TGLF out-
puts, using higher input dimensionality (23D), but restricted 
to input parameter combinations encountered in a set of 24 
discharges from the DIII-D tokamak [20].

Another important bottleneck in integrated transport simu-
lation is the self-consistent calculation of the various sources 
of particles, power and auxiliary current, which often take a 
significant fraction of the simulation time. When performing 
rapid simulations (for optimization or control purposes, as 
is often the case or RAPTOR), results from earlier runs of 
physics-based models can be directly used, or parametrized. 
Alternatively, real-time-capable source codes can be used, 
such as real-time TORBEAM for Electron Cyclotron Heating/
Current drive [21, 22], and the recently developed RABBIT 
code [23] for Neutral Beam Injection. When it is not possible 
to make real-time capable physics models, a neural network 
emulation can also be carried out. In the work presented here, 
source profiles are directly taken from previous runs of more 
sophisticated codes.

Nucl. Fusion 58 (2018) 096006
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In this paper, we demonstrate the use of QLKNN-4Dkin 
in the extended RAPTOR-code to predict Te, Ti, q and ne 
simultaneously for a JET discharge. We obtain core profiles 
that agree with results from the CRONOS transport simu-
lation suite [7] using the same transport model, confirming 
that the equations  are solved correctly in RAPTOR. These 
profiles reasonably predict the experimental measurements. 
Remaining discrepancies can be understood from the limits of 
the transport model used. We stress that the transport model 
does not have any free parameters other than the boundary 
conditions set at the top of the pedestal. The RAPTOR simula-
tions run faster than real-time on a standard laptop (2.6 GHz 
Intel R© coreTM i5), taking approximately 1 s to simulate 5 s of 
JET discharge with time steps of 0.1 s.

The remainder is organised as follows: section  2 details 
the multichannel transport equations solved within RAPTOR, 
and introduces the QLKNN-4Dkin transport model. Section 3 
shows the results of the JET simulation and comparison with 
CRONOS. Conclusions and an outlook to future work is pro-
vided in section 4.

2.  RAPTOR transport simulations with multiple 
channels

In this section  we list the equations  solved in RAPTOR as 
well as the main assumptions in the code. We also describe the 
QLKNN-4Dkin transport model in further detail.

2.1.  Equations solved in RAPTOR

2.1.1.  Basic assumptions and coordinate conventions.  The 
RAPTOR code assumes an axisymmetric tokamak equilib-
rium with right-handed (R,φ, Z) cylindrical coordinate sys-
tem, poloidal flux defined as ψ(R, Z) =

∫
S Bp · dSz, and Ip and 

B0 always positive5.
In all equations, the normalized square root of the toroidal 

flux ρ̂ = ρtor,N  is used as the spatial variable, defined as 
ρ̂ =

√
Φ/Φb with Φ(ψ) =

∫
Sψ

BφdSφ the toroidal magnetic 
flux enclosed by a poloidal flux surface, and Φb denotes the 
toroidal flux enclosed by the last closed flux surface (LCFS). 
We write separate equations for ψ and generic equations for 
energy and particle transport for each species, as follows.

2.1.2.  Flux diffusion equation.  This is the parabolic PDE used 
to evolve the distribution of poloidal magnetic flux ψ(ρ, t) in 
time:

σ‖

(
∂ψ

∂t

∣∣∣∣
ρ̂

− ρ̂Φ̇b

2Φb

∂ψ

∂ρ̂

)
=

F2

16π2µ0Φ2
bρ̂

∂

∂ρ̂

[
g2g3

ρ̂

∂ψ

∂ρ̂

]

− B0

2Φbρ̂
V ′
ρ̂( jbs + jaux)

�

(1)

σ‖ is the neoclassical conductivity, for which we use the 
expression in the Sauter model [25, 26]. jaux = 〈jaux · B〉/B0 

is the non-inductive current density driven by auxiliary sys-
tems. The bootstrap current density jbs = 〈jbs · B〉/B0 is 

also computed from the Sauter model. F = RBφ, V ′
ρ̂ = ∂V

∂ρ̂, 
g2 = 〈|∇V2|/R2〉 and g3 = 〈1/R2〉 (where 〈·〉 denote the flux-
surface average), are terms which depend on the magnetic 
equilibrium.

The boundary condition at the magnetic axis ρ̂ = 0 is 
∂ψ
∂ρ̂ = 0 while at the plasma boundary ρ̂ = 1 we use the rela-

tion g2g3
ρ̂

∂ψ
∂ρ̂ = 16π3µ0Φb

F  to prescribe a Neumann boundary 

condition for ∂ψ∂ρ̂  via the total plasma current Ip at the plasma 
edge.

2.1.3.  Energy transport equations.  We write the energy trans-
port equation, from [27], for a generic species s as:

3
2
(V ′

ρ̂)
−5/3

(
∂

∂t

∣∣∣∣
ρ̂

− Φ̇b

2Φb

∂

∂ρ̂
ρ̂

)

+
[
(V ′

ρ̂)
5/3nsTs

]
+

1
V ′
ρ̂

∂

∂ρ̂

(
− g1

V ′
ρ̂

nsχs
∂Ts

∂ρ̂
+

5
2

TsΓsg0

)
= Ps

� (2)
where Ts(ρ, t) and ns(ρ, t) are the temperatures and densities 
of the considered species. χs is the thermal diffusivity and 
Γs is the convective flux (4). Ps is the sum of power density 
sources and sinks, which will be discussed later. g0 = 〈|∇V|〉 
and g1 = 〈|∇V|2〉 are again flux-surface averaged terms that 
depend on the magnetic equilibrium geometry. In practice, 
(2) is re-written as an equation  for Ts(ρ, t) where ns(ρ, t) is 
considered an external parameter entering into the equation. 
To obtain a unique solution, the value of the plasma temper
ature is prescribed at the plasma boundary or at another radial 
location close to the edge. This is discussed in more detail in 
appendix.

2.1.4.  Particle transport equations.  The particle transport 
equation, again following [27], is written for the species s as:

1
V ′
ρ̂

(
∂

∂t

∣∣∣∣
ρ̂

− Φ̇b

2Φb

∂

∂ρ̂
ρ̂

)[
(V ′

ρ̂)ns
]
+

1
V ′
ρ̂

∂

∂ρ̂
Γs = Ss� (3)

with

Γs = − g1

V ′
ρ̂

Ds
∂ns

∂ρ̂
+ g0Vsns� (4)

where Ds ad Vs are the particle diffusivity and pinch terms 
(positive Vs corresponds to outward pinch) and Ss are (spa-
tially distributed) sources of particles. Similarly to the energy 
transport equation, boundary conditions can be given at the 
plasma boundary or another radial location close to the edge 
(see appendix).

After choosing for which species to solve the trans-
port PDE above, densities of other species and the effec-
tive charge are constrained by the quasineutrality condition 
ne =

∑
j Zjnj (where Zj is the charge of the jth ion species) 

and neZeff =
∑

j Z2
j nj . If Zeff is prescribed as input to the code 

then two particle densities can be determined. If Zeff is not 
prescribed, then only one particle density can be constrained 

5 In the COCOS tokamak coordinate convention system [24], RAPTOR has 
COCOS  =  11, the same as the ITER convention and with σIp = σBφ

= 1.
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and the others have to be manually prescribed or solved for. 
Typically one solves for either electrons or main ions. Separate 
transport of impurity species can in principle be simulated as 
well but is outside the scope of the transport model applied in 
this work.

2.2. Treatment of magnetic geometry, sources, and MHD

2.2.1. Treatment of magnetic geometry.  The (possibly time-
varying) terms in the equations that depend on the magnetic 
geometry (g0, g1, g2, g3, F, V ′

ρ̂) are assumed to be externally 
prescribed, as explained in detail in [4]. An external Grad–
Shafranov code is used to compute the flux-surface averages 
for the required times and the results are passed as input to 
the code. Iterative coupling with a fixed-boundary equilib-
rium code has been achieved but this is not used in the present 
paper. All simulations shown in this paper are done with a 
fixed equilibrium geometry.

2.2.2.  Sources and sinks.  Heating and current drive sources 
and sinks are either externally prescribed (as ρ̂-dependent 
heat deposition/current density profiles from more sophisti-
cated physics-based source simulation codes), or calculated 
using simple Gaussian profiles, prescribing deposition loca-
tion and width, as in [2]. For real-time applications, results 
from real-time ray tracing calculations (e.g. TORBEAM 
[22]) can be used. Other sources and sinks are modeled as 
described in [2]. In the simulations shown in this paper, ohmic 
power, electron-ion equipartition and bremsstahlung are self-
consistently calculated. NBI and ICRH power are taken from 
physics-based codes, as will be detailed later. Line-radiation is 
included based on experimentally-estimated profiles.

2.2.3.  Sawteeth and NTMs.  RAPTOR includes modules for 
simulating sawtooth crashes and Neoclassical Tearing Modes. 
The sawtooth module is discussed in [12], and uses the Por-
celli crash criterion for determining the onset of a sawtooth 
crash. A Kadomtsev full reconnection model is used for com-
puting the new profiles of magnetic flux, temperature, and 
particle density following the sawtooth crash [28]. Neoclas-
sical tearing modes are simulated self-consistently by using 
the generalized Rutherford equation to evolve the width of the 
island, while increasing the thermal transport coefficient in the 
region of the island to simulate the effect of enhanced trans-
port across flux surfaces reconnected by the island [29, 30].

2.3. Transport coefficients for particles and energy

Solving (2) and (3) requires expressions for χs, Ds and Vs for 
all the species solved. In RAPTOR, several transport models 
can be chosen. Empirical transport models for the thermal dif-
fusion can be used, such as Bohm-gyroBohm [31], as well 
as the empirical expression introduced in [2] to simulate 
improved confinement at low magnetic shear. More recently, 
a more advanced critical-gradient-based empirical model 
was introduced [4], which requires prescribing the H-factor 
and the line-averaged density of the discharge as a function 

of time. In the present work, we use a novel neural-network 
emulation of results of the QuaLiKiz quasilinear gyrokinetic 
transport model, which is described in more detail below.

2.3.1.  Neural-network emulation of the quasilinear gyrokinetic 
transport model QuaLiKiz.  As described in the introduction, 
QLKNN-4Dkin is a neural network regression of the Qua-
LiKiz model in a restricted input dimensionality subspace 
using a multilayer perceptron network [32]. A first proof-of- 
principle version of this model was presented in [19], which 
used adiabatic electrons and only predicted electron heat con-
ductivity. The version used for the present paper has been 
extended by including kinetic electrons and allows simulta-
neous evaluation of ion and electron heat conductivities, and 
electron particle diffusivity and pinch. The training set consists 
of a database of  ∼105 fluxes, generated using QuaLiKiz, per-
turbing 4 inputs (R/LTi, Ti/Te, q, ŝ), covering experimentally 
relevant ranges. Here, LTi ≡ −Ti/∇Ti, q is the safety factor, 

and ŝ = ρ̂
q
∂q
∂ρ̂ the magnetic shear. The gradient in the expres-

sion for LTi is defined with respect to the mid-plane averaged 
minor radius of the flux surface. The parameter ranges in the 
training set are identical to those in [19], and are repeated in 
table  2. Also the training methodology was similar and for 
brevity not repeated here.

Only ITG modes were unstable throughout the parameter 
range of the training set, due to specific values of the input 
parameters that were kept fixed in the construction of the 
neural network trainings set. The instabilities found in the 
discharge simulated here are all in the ITG regime, as cor-
roborated in [33] by an independent linear stability analysis 
for a similar discharge with nearly identical parameters. This 
increases the validity of this proof-of-principle version of the 
QLKNN transport model, when applied to this specific JET 
discharge. However for increased generality, work is in pro-
gress on neural-network regressions of QuaLiKiz including 
higher input dimensionality and cover ITG/TEM/ETG turbu-
lence regimes [34, 35].

QLKNN4D-kin is 6 orders of magnitude faster than 
QuaLiKiz itself, predicting full profiles of transport coeffi-
cients on millisecond timescales, making it suitable for faster-
than-realtime tokamak simulation. One essential feature of 
this neural network-emulated transport model is that analytical 
derivatives can be obtained for the transport coefficients with 
respect to the plasma profiles, which allows for fully implicit 
solution of the transport equations (see appendix for details), 
with great advantages in numerical stability and speed.

3.  Simulation results

3.1.  Simulation of JET shot #73342 with ψ, Te, Ti and ne

3.1.1.  Simulation setup.  To demonstrate the multi-channel 
simulations, we will predict the core profiles of JET discharge 
#73342 using RAPTOR and the QLKNN-4Dkin transport 
model. JET #73342 is a C-wall baseline discharge with 
B/Ip = 2.7 T/2.5 MA, 15 MW of NBI heating and 2 MW 
of ICRH power. The discharge has been analyzed in [33], and 
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the reader is referred to that work for further details on the 
discharge. The results are compared to experimental measure-
ments averaged over 0.5 s in the middle of the flat-top phase of 
the discharge, from Charge Exchange (Ti) and high resolution 
Thomson scattering (Te, ne) as well as to simulations using 
CRONOS with the same QLKNN-4Dkin transport model.

The CRONOS simulation was run for 2.5 s with boundary 
conditions at the pedestal top taken from time-averages of the 
experimental measurements. It evolves the profiles together 
with a self-consistent equilibrium from HELENA [36] and 
uses NEMO-SPOT [37] to calculate the NBI power/particle 
deposition, and driven current profiles. No line radiation, 
ICRH power or MHD effects were included in this simulation.

For the RAPTOR simulation, profiles of the power density 
to electrons and ions, the particle source profile, and the equi-
librium, are taken directly from the final time of the CRONOS 
simulation, and kept constant. The profile of Zeff was set to 
a constant value of 1.8 as in CRONOS, which was deter-
mined using Bremsstrahlung measurements. The ion density 
ni and of one impurity species (assumed to be carbon) were 
scaled based on the evolving ne profile, constrained by quasi-
neutrality and Zeff. The line-radiation profile was taken from 
bolometry data, and was observed to be dominated by edge 
radiation. ICRH profiles were calculated using the TORIC 
code [38] within TRANSP [39]. Sawtooth effects were mod-
eled as described in section  2.2.3, where the critical magn
etic shear at q  =  1 that triggers a sawtooth crash, was tuned 
to match the experimentallly observed sawtooth period of  
∼10 Hz in this phase of the discharge. All these physics 
effects were considered when comparing the RAPTOR simu-
lations to the experimental data. However, for the benchmark 
with the CRONOS simulation, the effects of line radiation, 
ICRH and sawteeth were not included, matching the setup of 
this particular CRONOS run.

The initial conditions for the RAPTOR simulation were set 
as follows: For the q profile, we choose the profile at the end 
of the CRONOS simulation. For Te, Ti, ne, we choose profiles 
20% higher than the final profiles of the CRONOS simulation, 
to allow for discernible evolution of the profiles towards sta-
tionary state. The simulation is run for 2 JET seconds. Since 
this is larger than the energy confinement time (<0.3 s) and 

particle confinement time (<1.0 s), the particle and energy 
balances are close to their equilibrium. The current distribu-
tion time is, however, longer than the simulation time. If left 
to evolve further, the q profile would change, affecting the 
transport fluxes via the dependency on q and s. However, in 
the interest of comparing the results to the CRONOS results 
with a given q profile, we choose to stop the simulation before 
the q profile has evolved significantly. The obtained profiles 
are therefore not the true steady-state profiles, but the profiles 
corresponding to the q profile given as input.

This is illustrated by the time evolution of the on-axis Te, 
Ti, and ne in the RAPTOR simulation shown in figure 1. The 
values converge to their quasi-stationary values. In each plot, 
two time scales of profile evolution are evident. The fast (for 
T and n) timescale, and a slower evolution associated with the 
resistive timescale due to the dependence of transport on the 
q-profile. The n evolution timescale is slower by a factor  ∼5 
with respect to the temperature evolution timescale.

3.1.2.  Benchmark between RAPTOR and CRONOS.  The 
RAPTOR simulation of JET 73342 is shown in figure  2, 
showing the quasi-stationary state profiles of Te, Ti and ne 
following 2 s of profile evolution. The comparison between 
RAPTOR and CRONOS is excellent, with only minor devia-
tions, attributed to the different methods for smoothing of the 
transport coefficients employed in RAPTOR and CRONOS. 
This verifies the implementation of the ion temperature and 
density transport equations in RAPTOR, as well as the cou-
pling of QLKNN4D-kin.

The boundary condition in the simulations was set at 
ρ̂ = 0.85, inside the (ELM-averaged) pedestal. The values of 
the profiles outside this position are of minor importance for 
core profile predictions, as the q profile is not significantly 
affected since we simulate over times shorter than the current 
diffusion time. The mismatch of the ρ̂ = 1 boundary condition 
(due to a lack of consistency in the χ values in that range) is 
hence not of importance to the comparisons.

Since the simulations shown in figure 2 did not include a 
sawtooth model, and since local gyrokinetic turbulence calcul
ations tend to predict stability in the inner radii (ρ̂ < 0.2), 
which would lead to significant local peaking, the transport 
coefficients in the core region were adjusted to yield flat core 
profiles. This was carried out by imposing minimum values 
of the transport coefficients in the simulation. In this case 
De, min = 0.1 m2 s−1, χe, min = 0.15 m2 s−1, and χi, min =  
0.2 m2 s−1. Also, when De = De, min, then Ve = 0. Such a pre-
scription effectively acts as a proxy for the effect of sawteeth.

3.1.3.  Comparison between RAPTOR and experimental 
results.  In figure 3, a comparison is shown between RAPTOR 
simulations and experimental measurements. In this case, the 
effects of line radiation, IC heating and sawteeth are simu-
lated. Including these effects causes an increase in the region 
ρN < 0.3 of only  ∼10% in the sawtooth-averaged profiles. 
This relatively small difference means that we can employ pre-
scribed minimum transport coefficients in the region affected 
by sawteeth as a proxy for their impact, allowing larger time 
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Figure 1.  Time-convergence of electron and ion thermal energy 
We, Wi and line integrated density during the RAPTOR simulation. 
The simulations are initialized with core profile values 20% higher/
lower than the final profiles of the CRONOS simulation, while the 
pedestal value is kept constant. The profiles converge to the same 
values after several energy and particle redistribution times.
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steps and faster simulations. We also show the effect of per-
turbing the boundary condition at ρN = 0.85 by 10%.

The agreement with experimental data is quantified in 
table  1, using a standard deviation figure  of merit [40, 41], 
where, for a quantity f:

σ =

√∫ ρ̂BC

ρ̂in

dx ( fsim − fexp)
2
/

√∫ ρ̂BC

ρ̂in

dxf 2
exp.� (5)

Where fsim is the simulated quantity, and fexp is the measured 
quantity. We have evaluated the figure of merit with ρ̂min = 0.2, 
to avoid the sawtoothing region. We have included a propaga-
tion of the estimated boundary condition uncertainty in the 
comparison. The predicted and simulated profiles generally 
agree within  ∼10%, on the order of the measured statistical 
uncertainties. However, there is a slight systematic underpre-
diction of the temperature gradients in the inner half-radius.

3.2.  Comparison of full QualiKiz versus QLKNN-4Dkin for 
simulation of JET #73342

The RAPTOR  +  QLKNN-4Dkin predictions in section  3.1 
show good correspondence with the experimental mea-
surements, in spite of the restricted dimensionality of the 
QuaLiKiz training set used for the neural network fitting. To 
further understand the sources of discrepancy, we performed 
a comparison between QLKNN-4Dkin, where many dimen-
sionless quantites are assumed constant, and full QuaLiKiz. 
For simplicity, we restrict the analysis to a standalone trans-
port coefficient comparison at two radial locations, at ρ̂ = 0.8 
where the gradient agreement is excellent, and at ρ̂ = 0.5 
where the ion and electron temperature gradients were under-
predicted by QLKNN-4Dkin.

The dimensionless parameter inputs are shown in table 2. 
The first row corresponds to the dimensionless parameters 
employed in the QuaLiKiz-4Dkin neural network training set. 
The values for R/LTe , R/Lne , ε,α, ν∗ and Zeff are shown, which 
are kept fixed in the training database. For the other values 
(R/LTi, Ti/Te, q, ŝ), which were varied in the training set, we 
display their ranges. QuaLiKiz is an electrostatic code, hence 
β is not one of the dimensionless parameters. The second and 
third row correspond to the full dimensionless parameter set 

Figure 3.  Comparison of RAPTOR profiles using QLKNN-4Dkin transport model and experimental data for JET shot 73342. Red-dashed 
curves show the results for the case without sawteeth, ICRH heating and line radiation, corresponding to the case shown in figure 2. Blue-
solid curves show the results after adding these effects. For the latter case, the boundary conditions at ρ̂ = 0.85 are also perturbed by  ±10% 
for sensitivity analysis. Experimental statistical errors are estimated at  ±10%.

Table 1.  Standard deviation figures of merit for the RAPTOR-
QLKNN4D-kin JET simulations shown in figure 3.

Case σTi σTe σne

Nominal 10.0% 6.9% 2.7%
BC reduced by 10% 13.1% 10.6% 11.0%
BC increased by 10% 4.0% 6.5% 7.1%

Figure 2.  Comparison of RAPTOR profiles using QLKNN-4Dkin transport model to CRONOS simulations using the same transport 
model. Agreement is excellent except for the region outside ρN > 0.85, owing to a different treatment of boundary conditions.
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at ρ̂ = 0.5 and ρ̂ = 0.8 respectively, taken from the last time 
point in the nominal RAPTOR simulation.

The comparison between QLKNN-4Dkin and QuaLiKiz 
standalone calculations is shown in figure  4. The left panel 
corresponds to calculation at ρ̂ = 0.5, and the right panel to 
ρ̂ = 0.8. The values of the transport coefficients that are com-
puted by the transport model (χe, χi , De, RVe) are shown for 
various calculations. All transport coefficients are in SI units, 
rescaled using the local plasma parameters at each radius from 
the QuaLiKiz-computed GyroBohm-normalized coefficients.

The set labelled ‘NN4D’ corresponds to the neural net-
work transport model prediction. The set labelled ‘QLK4D’ 
corresponds to the QuaLiKiz calculated transport coefficients, 
where the fixed variables from the neural network training 
are imposed, and R/LTi, Ti/Te, ŝ, q are all included with their 
nominal values. The comparison of NN4D and QLK4D indi-
cates the quality of the NN regression of QuaLiKiz. It is evi-
dent that the regression provides a good match, particularly 
at ρ̂ = 0.8, with some mismatch at ρ̂ = 0.5. From additional 
analysis, it appears that these discrepancies, which result from 
imperfect neural network regression, can be resolved by  ∼5% 

modifications of the input parameters, reflecting the large sen-
sitivity of the transport fluxes to the inputs, a property often 
described as ‘stiffness’.

The set labelled ‘QLK nominal’ corresponds to including 
all parameters taken from the nominal simulation profiles in 
the full QuaLiKiz calculation. This serves to analyze the 
impact of including the actual R/LTe, R/Ln, ε, α, ν∗ and Zeff 
on the resulting transport coefficients. For the ρ̂ = 0.5 case, 
the unstable modes are stabilized (hence transport coef-
ficients are zero). At ρ̂ = 0.8, only a moderate increase in 
transport is predicted. This is surprising considering the 
significant differences in the parameters compared to the 
fixed training set values, particularly for α, ν∗ and R/LTe. 
However, the destabilizing impact (e.g. of higher ε and α) 
and stabilizing impact (e.g. of lower ν∗ and higher Zeff) 
of the various parameters in this specific regime, tend to 
cancel each other out, coincidentally. Through an increase 
of R/LTi by 15% at ρ̂ = 0.5, and a reduction by only 7% at 
ρ̂ = 0.8, the original heat transport coefficients are recov-
ered, as shown in the rightmost transport coefficient set. 
This suggests that the underprediction of the temperature 

Table 2.  JET 733424 dimensionless parameters at 2 radial locations at ρ̂ = 0.5 and ρ̂ = 0.8, taken from the stationary profiles of the 
RAPTOR simulation displayed in figure 3. ρ̂  is the normalized toroidal flux coordinate. ν∗ is the normalized electron collisionality: 
ν∗≡νei

qR
ε1.5vte

, with ε = a/R, vte ≡
√

Te/me  and α ≡ q2 ∑
j βj (R/Lnj + R/LTj). The dimensionless parameters are compared to the values 

used in the QuaLiKiz runs applied for the 4D neural network (NN) training set (1st row). The first four quantities, which can vary in the 
NN inputs, are marked as (min–max) indicating the minimum/maximum values in the database used to train the neural network. The ν∗ in 
the first row corresponds to the small variation due to the varying q in the training set, whereas the underlying νei remains constant—in any 
case ν∗ remains in the near-collisionless regime. No rotation was included in the simulations considered here.

Data source R/LTi Ti/Te ŝ q R/LTe R/Ln ε α ν∗ Zeff

QLKNN4D-kin [2–12] [0.3–3] [0.1–3] [1–5] 6 2 0.167 0 [1.3×10−3– 6 ×10−3] 1.0

JET 73342 simulation ρ̂ = 0.5 0.4 0.97 0.9 5.0 3.9 1.5 0.172 0.19 0.05 1.8

JET 73342 simulaiton ρ̂ = 0.8 1.5 0.96 1.7 8.5 10.8 2.6 0.275 0.71 0.17 1.8

Figure 4.  Comparison of transport coefficients between QLKNN4D-kin (NN4D) and full QuaLiKiz with the same fixed parameters as used 
for training the network (QLK4D), full QuaLiKiz with input parameters taken from the experiment, albeit without rotation (QLK nominal), 
and full QuaLiKiz with manually scaled R/LTi to match experimental heat fluxes.
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gradients at mid-radius would be partially rectified by 
including all nominal parameters. The only discrepancy 
is in the particle convection term RVe, which reverses sign 
when including all nominal parameters, possibly indicating 
that the nominal QuaLiKiz prediction would lead to flatter 
density. However these effects are included in the NN 
regression of QLK under development [34, 35].

Furthermore, this analysis has confirmed that ITG 
modes are dominant in this regime, confirming the validity 
of QLKNN4D-kin for this specific case. In wider param
eter regimes, where more mode classes may be unstable, a 
more general neural network emulation of QuaLiKiz will be 
used. Indeed, a 10D neural network emulation of QuaLiKiz, 
including R/LTe, R/Ln, ε, ν∗, Zeff and rotation, is currently 
under construction [34]. Additionally, recent versions of 
QuaLiKiz [16, 42] do include rotation and will be used to train 
future versions of the neural network emulations.

3.3.  NBI input power scan including core-pedestal coupling

To conclude this section, we present demonstrative time-
dependent simulations of an NBI power ramp based on the 
discharge presented in section  3.1.2 (without sawteeth). 
Starting from the final profiles of that simulation, a 5 s simula-
tion is carried out with two steps of NBI power. These steps 
in power are simulated by scaling the NBI heat and particle 
sources, and driven current profile, by ×1.5 (between 1 s and 
3 s) and ×2 (from 3 s until 5 s) respectively. This is not an 
entirely accurate representation of the true effect of increasing 
NBI power, which would need to consider a self-consistent 
evaluation of the ionization and fast ion slowing-down physics 
with respect to the evolving plasma parameters.

In order to simulate the expected increase in pedestal pres
sure with increasing power, a simple model for the boundary 
condition is introduced that couples the pedestal top temper
ature to the core profiles via proportionality to the Shafranov 

Figure 5.  Time-dependent simulation using RAPTOR with QLKNN-4Dkin and a core-pedestal coupling model. Two steps in NBI power 
are simulated, resulting in different temperature, density and conductivity profiles. Time-traces of temperatures, electron density and 
pressure are shown in the top panels. Profiles of electron temperature, density, and safety factor q are shown in the middle panels. Ti is 
omitted since its evolution strongly resembles that of Te. Sources, thermal conductivities and particle transport coefficients are presented in 
the bottom panels. The various colours correspond to the profiles at t  =  1 s, t  =  3 s and t  =  5 s.
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shift parameter: ∆s = βp + li/2. Pedestal confinement is 
known to improve with Shafranov shift, through an increased 
critical threshold of peeling-ballooning modes [43]. This 
simple, ad-hoc model is written (both for ion and electron 
temperature) as

Te, i(ρped) = cTb(∆s −∆0
s ) + Tb0.� (6)

The values of ∆0
s , Teb0 are taken from the initial condition of 

the simulation. The free parameter cTeb is chosen to maintain 
the H98 factor roughly constant during the power scan.

Results of the simulation, which took only a few seconds 
to execute on single 2.6 GHz Intel R© coreTM i5 processor, are 
shown in figure 5. On the top panels, the time-history of the 
central temperatures, electron density and pressure are shown. 
Clearly, two time scales can be seen owing to the (fast) con-
finement times and (slow) current redistribution times. Kinetic 
and source profiles at the initial, middle and final time of the 
simulation are shown in the middle and lower panels.

The changes in the pedestal boundary condition at 
ρped = 0.85 are clearly visible as contributing to the increase 
in temperature. We emphasize that the variation in ped-
estal boundary condition is due to the response of the first- 
principle-based core transport model to the power increment. 
Also, the values in the center region (ρ̂ < 0.2) are sensitive to 
the prescribed minimum values of the transport coefficients 
that are used in regions where ITG modes are stable. The 
q changes are rather small owing to the long global current 
redistribution time for JET discharges at these temperatures 
(typically ∼ 10 s). The values of H98 are (0.796, 0.7560.755) 
at t = [1, 3, 5] respectively.

Note that while it is known that in reality H98 tends to 
increase with power at JET [44], (owing an the overly pes-
simistic P−0.7 term in the H98 scaling), the purpose of this 
model is to demonstrate the core-pedestal coupling in these 
time-dependent simulations. In the future, this capability can 
be used to include a more physics-based pedestal model into 
these simulations, for example as in [20].

Finally, as a demonstration of the numerical stability of 
the code, we repeat the simulations shown in figure 5, which 
were done with time steps of 0.1 s, with time steps of 0.25 s 

and 0.5 s respectively. As can be witnessed from figure 6, the 
results on long timescales are practically identical, while on 
time scales shorter than the confinement time, taking a too 
long time step results in some inaccuracy during the initial 
response to the power steps. Still, when only long-term time 
evolution is important, taking long time steps allows even 
faster simulations to be carried out.

4.  Conclusion and outlook

In this paper, we have shown the extension of the RAPTOR 
control-oriented transport simulator to provide, for the first 
time, real-time capable simulations of core Te, Ti, ne and q 
profiles in a tokamak.

These simulations presented here used the QLKNN-4Dkin 
transport model, providing first-principle predictions of the 
core profiles. By prescribing only the boundary conditions 
at the top of the H-mode pedestal, good agreement with JET 
experimental data was found in the region ρ̂ < 0.85. Within 
ρ̂ = 0.5, slightly lower core temperatures were obtained with 
respect to diagnostic measurements, which could be explained 
by the restricted input dimensionality of the present version of 
the QLKNN transport model. Work is in progress to extend 
the QuaLiKiz database to higher input dimensionality (10D), 
covering ITG, TEM, and ETG turbulence in a wider range 
of experimentally relevant input parameters, and to train new 
neural network transport models using these databases [34]. 
Furthermore, a JET-specific database spanning 14 QuaLiKiz 
input dimensions is being constructed, with data points clus-
tered around regions of the parameter space that appear in 
experimental profiles based on 2000 discharges [35]. A multi-
machine extension thereof is also planned.

While here the new capabilities of RAPTOR to solve 
several transport equations  have been illustrated using the 
QLKNN-4D transport model, other transport models can be 
used, e.g. Bohm-gyroBohm [31] or the model used in [4].

Further work on improving and extending the RAPTOR 
code for predictive simulation purposes will focus on cou-
pling to free- and fixed-boundary Grad–Shafranov equlibrium 
solvers, as well as on fast models to estimate the sources and 

Figure 6.  Comparison of time-dependent simulations as shown in figure 5, executed with different simulation time steps. Owing to the 
numerical stability of the fully implicit time scheme used by RAPTOR, the simulation is numerically stable even for very large time steps 
up to 0.5 s (which is longer than a JET confinement time). For such large time steps, the transient phase following the power steps can not 
be captured accurately, while the simulations converge to similar profiles on longer time scales.
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sinks of power and particles (including radiation). Furthermore, 
use of core-pedestal models is envisaged, for example using 
a neural network regression of pedestal heights and widths 
derived from the EPED model [45], as in [20]. Coupling to the 
edge would require validated, reduced models of the plasma in 
that region (e.g. 2-point models) or neural network regressions 
of more complex, higher dimensional models.

Finally, real-time applications of the new capabilities of 
RAPTOR are envisaged, for example for real-time moni-
toring of the discharge evolution with respect to increasingly 
accurate first-principle-based transport model predictions, 
allowing a control system to take appropriate action if discrep-
ancies are detected. The addition of particle density transport 
equations  enables, in particular, estimation of approaching 
density limits and prediction of impurity accumulation. Also, 
automated off-line tokamak scenario optimization as in [2–4] 
will benefit from more enhanced predictive capability of the 
transport simulator.
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Appendix.  Details of the numerical implementation

Details of the numerical implementation for the original 
RAPTOR code were given in [2] and [4]. The details of the 
implementation are updated here for completeness.

First, the PDE to be solved for a dependent variable y(ρ̂, t) 
is written in the generic form

my
∂y
∂t

=
∂

∂ρ̂
(ayy) +

∂

∂ρ̂
dy

∂y
∂ρ̂

+ hyTe + sy� (A.1)

where my, ay, dy, hy, sy  may also depend on (ρ, t).
Then, the dependent variable is expressed as a sum of nsp 

third-order B-spline basis functions: y(ρ̂, t) =
∑nsp

i Λα(ρ)ŷα 
with (scalar) basis function coefficients ŷα. The set of basis 
functions is chosen so as to identically satisfy the boundary 
condition at ρ = 0. The resulting equation is multiplied by a 
set of trial functions Λβ, chosen equal to Λα. The result is inte-
grated over the domain ρ̂ = [0, 1], where integration by parts is 
used to remove second-order derivative terms, at the expense 
of introducing additional boundary terms.

This yields a set of nonlinear ordinary differential equa-
tions, written in matrix-vector form as:

My ˙̂y = (−Ay − Dy + Hy)ŷ + l + s� (A.2)

where the α,β  elements of the matrices are:

My,(α,β) =

∫ 1

0
myΛβΛαdρ̂� (A.3)

Ay,(α,β) =

∫ 1

0
ay
∂Λβ

∂ρ̂
Λαdρ̂� (A.4)

Dy,(α,β) =

∫ 1

0
dy
∂Λβ

∂ρ̂

∂Λα

∂ρ̂
dρ̂� (A.5)

Hy,(α,β) =

∫ 1

0
hyΛβΛαdρ̂.� (A.6)

Furthermore

sy,β =

∫ 1

0
Λβsydρ̂� (A.7)

ly,β =

[(
ayy + dy

∂y
∂ρ̂

)
Λβ

]

ρ̂=1
if β = nsp, 0 otherwise.

� (A.8)
Note that there are many nonlinearities in (A.2) due to the 
possible dependence of my, ay, dy, hy, sy  on all the profiles that 
are being solved for.

In this form, the matrix (−Ay − Dy + Hy) does not have 
full rank, reflecting the fact that we need to impose a boundary 
condition to solve the PDE. To this end, the last equation of 
(A.2) is replaced by an equation imposing the boundary condi-
tion, written as 

∑
α Λα(ρ̂BC) = yBC. In this way, it is possible 

to impose time-varying boundary conditions at a time-varying 
radial location, which is useful when switching from L-mode 
(where one might prescribes the boundary condition at ρ̂ = 1) 
to H-mode (where one might prescribe the boundary condi-
tion inside the pedestal top (e.g. ρ̂ = 0.85)). It is also possible 
to set yBC as being a function of the plasma profiles, in order 
to implement core-pedestal coupling.

The user can specify for which channels to solve the 
PDE. For each of these we obtain a system of ODEs for the 
vector yj ∀j = {1, . . . , N}, where N is the number of PDEs 
to be solved. By combining these into a single ‘state’ vector 
x = [yT

1 , . . . , yT
N ]

T , the system of all the ODEs can be com-
bined into a single equation of the form:

0 = f̃ (ẋ(t), x(t), z(t))� (A.9)

where we have collected all external time-dependent quanti-
ties that influence the PDE evolution (sources, transport coef-
ficients, etc) into the variable z(t).

As explained in more detail in [2], this continuous-time 
nonlinear ODE is discretized in time by a backward Euler 
method: ẋ = (xk+1 − xk)/∆t, x  =  xk+1. This yields the non-
linear equation:

0 = f (xk+1, xk, zk).� (A.10)

With given xk (from the previous time step) and zk, this can be 
solved for xk+1. The solution is sought by Newton-Rapson iter-

ations, where the required Jacobian ∂f
∂xk+1

 is calculated analyti-

cally at each iteration. While it is cumbersome to implement 
these analytical Jacobians for the many nonlinear expressions 
that enter into tokamak transport coefficients and sources, this 
method of solution allows large time-steps to be taken (even 
exceeding the energy confinement time).
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RAPTOR is entirely implemented in Matlab. For real-
time applications, the code is included in a Simulink R© model 
and C-code is automatically generated and compiled for the 
target real-time system [46]. For stand-alone use, Matlab 
code can also be automatically converted to C-code and com-
piled, also providing a significant speed-up for the purpose 
of optimization or systematic scans which may require many 
runs. The latter option was used to determine the execution 
times cited in this paper.
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