76 research outputs found

    A designed protein interface that blocks fibril formation

    Get PDF
    Protein fibril formation is implicated in many diseases, and therefore much effort has been focused toward the development of inhibitors of this process. In a previous project, a monomeric protein was computationally engineered to bind itself and form a heterodimer complex following interfacial redesign. One of the protein monomers, termed monomer-B, was unintentionally destabilized and shown to form macroscopic fibrils. Interestingly, in the presence of the designed binding partner, fibril formation was blocked. Here we describe the complete characterization of the amyloid properties of monomer-B and the inhibition of fiber formation by the designed binding partner, monomer-A. Both proteins are mutants of the betal domain of streptococcal protein-G. The free monomer-B protein forms amyloid-type fibrils, as determined by transmission electron microscopy and the change in fluorescence of Thioflavin T, an amyloid-specific dye. Fibril formation kinetics are influenced by pH, protein concentration, and seeding with preformed fibrils. Under all conditions tested, monomer-A was able to inhibit the formation of monomer-B fibrils. This inhibition is specific to the engineered interaction, as incubation of monomer-B with wild-type protein-G (a structural homologue) did not result in inhibition under the same conditions. Thus, this de novo-designed heterodimeric complex is an excellent model system for the study of protein-based fibril formation and inhibition. This system provides additional insight into the development of pharmaceuticals for amyloid disorders, as well as the potential use of amyloid fibrils for self-assembling nanostructures

    Using molecular dynamics simulations as an aid in the prediction of domain swapping of computationally designed protein variants

    Get PDF
    In standard implementations of computational protein design, a positive-design approach is used to predict sequences that will be stable on a given backbone structure. Possible competing states are typically not considered, primarily because appropriate structural models are not available. One potential competing state, the domain-swapped dimer, is especially compelling because it is often nearly identical to its monomeric counterpart, differing by just a few mutations in a hinge region. Molecular dynamics (MD) simulations provide a computational method to sample different conformational states of a structure. Here, we tested whether MD simulations could be used as a post-design screening tool to identify sequence mutations leading to domain-swapped dimers. We hypothesized that a successful computationally-designed sequence would have backbone structure and dynamics characteristics similar to that of the input structure, and that in contrast, domain-swapped dimers would exhibit increased backbone flexibility and/or altered structure in the hinge-loop region to accommodate the large conformational change required for domain swapping. While attempting to engineer a homodimer from a 51 amino acid fragment of the monomeric protein engrailed homeodomain (ENH), we had instead generated a domain-swapped dimer (ENH_DsD). MD simulations on these proteins showed increased MD simulation derived B factors in the hinge loop of the ENH_DsD domain-swapped dimer relative to monomeric ENH. Two point mutants of ENH_DsD designed to recover the monomeric fold were then tested with an MD simulation protocol. The MD simulations suggested that one of these mutants would adopt the target monomeric structure, which was subsequently confirmed by X-ray crystallography

    Computational design and experimental verification of a symmetric protein homodimer

    Get PDF
    Homodimers are the most common type of protein assembly in nature and have distinct features compared with heterodimers and higher order oligomers. Understanding homodimer interactions at the atomic level is critical both for elucidating their biological mechanisms of action and for accurate modeling of complexes of unknown structure. Computation-based design of novel protein–protein interfaces can serve as a bottom-up method to further our understanding of protein interactions. Previous studies have demonstrated that the de novo design of homodimers can be achieved to atomic-level accuracy by β-strand assembly or through metal-mediated interactions. Here, we report the design and experimental characterization of a α-helix–mediated homodimer with C2 symmetry based on a monomeric Drosophila engrailed homeodomain scaffold. A solution NMR structure shows that the homodimer exhibits parallel helical packing similar to the design model. Because the mutations leading to dimer formation resulted in poor thermostability of the system, design success was facilitated by the introduction of independent thermostabilizing mutations into the scaffold. This two-step design approach, function and stabilization, is likely to be generally applicable, especially if the desired scaffold is of low thermostability

    A de novo designed protein-protein interface

    Get PDF
    As an approach to both explore the physical/chemical parameters that drive molecular self-assembly and to generate novel protein oligomers, we have developed a procedure to generate protein dimers from monomeric proteins using computational protein docking and amino acid sequence design. A fast Fourier transform-based docking algorithm was used to generate a model for a dimeric version of the 56-amino-acid β1 domain of streptococcal protein G. Computational amino acid sequence design of 24 residues at the dimer interface resulted in a heterodimer comprised of 12-fold and eightfold variants of the wild-type protein. The designed proteins were expressed, purified, and characterized using analytical ultracentrifugation and heteronuclear NMR techniques. Although the measured dissociation constant was modest (~300 µM), 2D-[^1H,^(15)N]-HSQC NMR spectra of one of the designed proteins in the absence and presence of its binding partner showed clear evidence of specific dimer formation

    Modelling human performance within manufacturing systems design:from a theoretical towards a practical framework

    Get PDF
    Computer-based simulation is frequently used to evaluate the capabilities of proposed manufacturing system designs. Unfortunately, the real systems are often found to perform quite differently from simulation predictions and one possible reason for this is an over-simplistic representation of workers' behaviour within current simulation techniques. The accuracy of design predictions could be improved through a modelling tool that integrates with computer-based simulation and incorporates the factors and relationships that determine workers' performance. This paper explores the viability of developing a similar tool based on our previously published theoretical modelling framework. It focuses on evolving this purely theoretical framework towards a practical modelling tool that can actually be used to expand the capabilities of current simulation techniques. Based on an industrial study, the paper investigates how the theoretical framework works in practice, analyses strengths and weaknesses in its formulation, and proposes developments that can contribute towards enabling human performance modelling in a practical way

    Tales from the chalkface: using narratives to explore agency, resilience and identity of gay teachers

    Get PDF
    Existing literature is dominated by accounts which position gay teachers as victims. We were concerned that this only presented a partial insight into the experiences of gay teachers. This study researched the personal and professional experiences of four gay teachers in England. It builds on existing research by presenting positive narratives rather than positioning gay teachers as victims. We use the term “chalkface” to illustrate that all were practicing teachers. The purpose of the study was to explore their experiences as gay teachers throughout their careers. The study used the life history method to create narratives of each participant. Semi-structured interviews were used. The study found that the repeal of Section 28 in England in 2003 did not have an immediate effect on the identities, resilience, and agency of the participants. The 2010 Equality Act in England and changes to the school inspection framework had a greater influence in supporting their agency, resilience, and willingness to merge personal and professional identities. All but one participant managed to use their identities as gay teachers to advance inclusion and social justice through the curriculum. Although the narratives that we have presented do illuminate some negative experiences, the accounts are largely positive, in contrast with existing literature which positions gay teachers as victims

    Heterozygosity for Pten Promotes Tumorigenesis in a Mouse Model of Medulloblastoma

    Get PDF
    BACKGROUND: Recent publications have described an important role for cross talk between PI-3 kinase and sonic hedgehog signaling pathways in the pathogenesis of medulloblastoma. METHODOLOGY/PRINCIPAL FINDINGS: We crossed mice with constitutive activation of Smoothened, SmoA1, with Pten deficient mice. Both constitutive and conditional Pten deficiency doubled the incidence of mice with symptoms of medulloblastoma and resulted in decreased survival. Analysis revealed a clear separation of gene signatures, with up-regulation of genes in the PI-3 kinase signaling pathway, including downstream activation of angiogenesis in SmoA1+/-; Pten +/- medulloblastomas. Western blotting and immunohistochemistry confirmed reduced or absent Pten, Akt activation, and increased angiogenesis in Pten deficient tumors. Down-regulated genes included genes in the sonic hedgehog pathway and tumor suppressor genes. SmoA1+/-; Pten +/+ medulloblastomas appeared classic in histology with increased proliferation and diffuse staining for apoptosis. In contrast, Pten deficient tumors exhibited extensive nodularity with neuronal differentiation separated by focal areas of intense staining for proliferation and virtually absent apoptosis. Examination of human medulloblastomas revealed low to absent PTEN expression in over half of the tumors. Kaplan-Meier analysis confirmed worse overall survival in patients whose tumor exhibited low to absent PTEN expression. CONCLUSIONS/SIGNIFICANCE: This suggests that PTEN expression is a marker of favorable prognosis and mouse models with activation of PI-3 kinase pathways may be important tools for preclinical evaluation of promising agents for the treatment of medulloblastoma

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore