61 research outputs found

    Crystal growth and superconductivity of FeSe_x

    Full text link
    Single crystals FeSe_x have been grown in evacuated sealed quartz tube using a NaCl/KCl flux. The products include two crystal structures of tetragon and hexagon. The electronic transport and magnetic properties measurements of FeSe_x single crystal exhibits a superconducting transition at about 10K.Comment: 9 pages, 4 Figure

    Striped antiferromagnetism and electronic structures of SrFeAsF and their implications

    Full text link
    We investigate structural, magnetic, and electronic properties of SrFeAsF as a new parent for superconductors using state-of-the-art density-functional theory method. Calculated results show that striped antiferromagnetic order is the magnetic ground state in the Fe layer and interlayer magnetic interaction is tiny. Calculated As and Sr positions are in agreement with experiment. There are only two uniaxially-dispersed bands near the Fermi level. The valent charge is mainly in the Fe and F layers, and the magnetic moment is confined to the Fe atoms. Inter-Fe-spin couplings is due to superexchange through As atoms. These are useful to understanding the SrFeAsF and should have helpful implications to doped samples.Comment: 5 pages with figures include

    Interplay between magnetism and superconductivity and appearance of a second superconducting transition in alpha-FeSe at high pressure

    Full text link
    We synthesized tetragonal alpha-FeSe by melting a powder mixture of iron and selenium at high pressure. Subsequent annealing at normal pressure results in removing traces of hexagonal beta- FeSe, formation of a rather sharp transition to superconducting state at Tc ~ 7 K, and the appearance of a magnetic transition near Tm = 120 K. Resistivity and ac-susceptibility were measured on the annealed sample at hydrostatic pressure up to 4.5 GPa. A magnetic transition visible in ac-susceptibility shifts down under pressure and the resistive anomaly typical for a spin density wave (SDW) antiferromagnetic transition develops near the susceptibility anomaly. Tc determined by the appearance of a diamagnetic response in susceptibility, increases linearly under pressure at a rate dTc/dP = 3.5 K/GPa. Below 1.5 GPa, the resistive superconducting transition is sharp; the width of transition does not change with pressure; and, Tc determined by a peak in drho/dT increases at a rate ~ 3.5 K/GPa. At higher pressure, a giant broadening of the resistive transition develops. This effect cannot be explained by possible pressure gradients in the sample and is inherent to alpha-FeSe. The dependences drho(T)/dT show a signature for a second peak above 3 GPa which is indicative of the appearance of another superconducting state in alpha-FeSe at high pressure. We argue that this second superconducting phase coexists with SDW antiferromagnetism in a partial volume fraction and originates from pairing of charge carriers from other sheets of the Fermi surface

    Distorted magnetic orders and electronic structures of tetragonal FeSe from first-principles

    Full text link
    We use the state-of-the-arts density-functional-theory method to study various magnetic orders and their effects on the electronic structures of the FeSe. Our calculated results show that, for the spins of the single Fe layer, the striped antiferromagnetic orders with distortion are more favorable in total energy than the checkerboard antiferromagnetic orders with tetragonal symmetry, which is consistent with known experimental data, and the inter-layer magnetic interaction is very weak. We investigate the electronic structures and magnetic property of the distorted phases. We also present our calculated spin coupling constants and discuss the reduction of the Fe magnetic moment by quantum many-body effects. These results are useful to understand the structural, magnetic, and electronic properties of FeSe, and may have some helpful implications to other FeAs-based materials

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
    corecore