90 research outputs found

    CP-31398, a putative p53-stabilizing molecule tested in mammalian cells and in yeast for its effects on p53 transcriptional activity

    Get PDF
    BACKGROUND: CP-31398 is a small molecule that has been reported to stabilize the DNA-binding core domain of the human tumor suppressor protein p53 in vitro. The compound was also reported to function as a potential anti-cancer drug by rescuing the DNA-binding activity and, consequently, the transcription activation function of mutant p53 protein in mammalian tissue culture cells and in mice. RESULTS: We performed a series of gene expression experiments to test the activity of CP-31398 in yeast and in human cell cultures. With these cell-based assays, we were unable to detect any specific stimulation of mutant p53 activity by this compound. Concentrations of CP-31398 that were reported to be active in the published work were highly toxic to the human H1299 lung carcinoma and Saos-2 cell lines in our experiments. CONCLUSION: In our experiments, the small molecule CP-31398 was unable to reactivate mutant p53 protein. The results of our in vivo experiments are in agreement with the recently published biochemical analysis of CP-31398 showing that this molecule does not bind p53 as previously claimed, but intercalates into DNA

    MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4

    Get PDF
    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically

    Changes in the status of p53 affect drug sensitivity to thymidylate synthase (TS) inhibitors by altering TS levels

    Get PDF
    Colorectal cancer (CRC) resistance to fluoropyrimidines and other inhibitors of thymidylate synthase (TS) is a serious clinical problem often associated with increased intracellular levels of TS. Since the tumour suppressor gene p53, which is mutated in 50% of CRC, regulates the expression of several genes, it may modulate TS activity, and changes in the status of p53 might be responsible for chemoresistance. Therefore, this study was aimed to investigate TS levels and sensitivity to TS inhibitors in wild-type (wt) and mutant (mt) p53 CRC cells, Lovo and WiDr, respectively, transfected with mt and wt p53. Lovo 175X2 cells (transfected with mt p53) were more resistant to 5-fluorouracil (5-FU; 2-fold), nolatrexed (3-fold), raltitrexed (3-fold) and pemetrexed (10-fold) in comparison with the wt p53 parental cells Lovo 92. Resistance was associated with an increase in TS protein expression and catalytic activity, which might be caused by the loss of the inhibitory effect on the activity of TS promoter or by the lack of TS mRNA degradation, as suggested by the reversal of TS expression to the levels of Lovo 92 cells by adding actinomycin. In contrast, Lovo li cells, characterized by functionally inactive p53, were 3-13-fold more sensitive to nolatrexed, raltitrexed and pemetrexed, and had a lower TS mRNA, protein expression and catalytic activity than Lovo 92. However, MDM-2 expression was significantly higher in Lovo li, while no significant differences were observed in Lovo 175X2 cells with respect to Lovo 92. Finally, mt p53 WiDr transfected with wt p53 were not significantly different from mt p53 WiDr cells with respect to sensitivity to TS inhibitors or TS levels. Altogether, these results indicate that changes in the status of p53, can differently alter sensitivity to TS inhibitors by affecting TS levels, depending on activity or cell line, and might explain the lack of clear correlation between mutations in p53 and clinical outcome after chemotherapy with TS inhibitors

    Disagreements with implications: diverging discourses on the ethics of non-medical use of methylphenidate for performance enhancement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is substantial evidence that methylphenidate (MPH; Ritalin), is being used by healthy university students for non-medical motives such as the improvement of concentration, alertness, and academic performance. The scope and potential consequences of the non-medical use of MPH upon healthcare and society bring about many points of view.</p> <p>Methods</p> <p>To gain insight into key ethical and social issues on the non-medical use of MPH, we examined discourses in the print media, bioethics literature, and public health literature.</p> <p>Results</p> <p>Our study identified three diverging paradigms with varying perspectives on the nature of performance enhancement. The beneficial effects of MPH on normal cognition were generally portrayed enthusiastically in the print media and bioethics discourses but supported by scant information on associated risks. Overall, we found a variety of perspectives regarding ethical, legal and social issues related to the non-medical use of MPH for performance enhancement and its impact upon social practices and institutions. The exception to this was public health discourse which took a strong stance against the non-medical use of MPH typically viewed as a form of prescription abuse or misuse. Wide-ranging recommendations for prevention of further non-medical use of MPH included legislation and increased public education.</p> <p>Conclusion</p> <p>Some positive portrayals of the non-medical use of MPH for performance enhancement in the print media and bioethics discourses could entice further uses. Medicine and society need to prepare for more prevalent non-medical uses of neuropharmaceuticals by fostering better informed public debates.</p

    A reporting format for leaf-level gas exchange data and metadata

    Get PDF
    Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to efforts to improve crop production. Collection of these data using gas analyzers can be both technically challenging and time consuming, and individual studies generally focus on a small range of species, restricted time periods, or limited geographic regions. The high value of these data is exemplified by the many publications that reuse and synthesize gas exchange data, however the lack of metadata and data reporting conventions make full and efficient use of these data difficult. Here we propose a reporting format for leaf-level gas exchange data and metadata to provide guidance to data contributors on how to store data in repositories to maximize their discoverability, facilitate their efficient reuse, and add value to individual datasets. For data users, the reporting format will better allow data repositories to optimize data search and extraction, and more readily integrate similar data into harmonized synthesis products. The reporting format specifies data table variable naming and unit conventions, as well as metadata characterizing experimental conditions and protocols. For common data types that were the focus of this initial version of the reporting format, i.e., survey measurements, dark respiration, carbon dioxide and light response curves, and parameters derived from those measurements, we took a further step of defining required additional data and metadata that would maximize the potential reuse of those data types. To aid data contributors and the development of data ingest tools by data repositories we provided a translation table comparing the outputs of common gas exchange instruments. Extensive consultation with data collectors, data users, instrument manufacturers, and data scientists was undertaken in order to ensure that the reporting format met community needs. The reporting format presented here is intended to form a foundation for future development that will incorporate additional data types and variables as gas exchange systems and measurement approaches advance in the future. The reporting format is published in the U.S. Department of Energy's ESS-DIVE data repository, with documentation and future development efforts being maintained in a version control system

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    G-quadruplex organic frameworks

    Get PDF
    Two-dimensional covalent organic frameworks often π stack into crystalline solids that allow precise spatial positioning of molecular building blocks. Inspired by the hydrogen-bonded G-quadruplexes found frequently in guanine-rich DNA, here we show that this structural motif can be exploited to guide the self-assembly of naphthalene diimide and perylene diimide electron acceptors end-capped with two guanine electron donors into crystalline G-quadruplex-based organic frameworks, wherein the electron donors and acceptors form ordered, segregated π-stacked arrays. Time-resolved optical and electron paramagnetic resonance spectroscopies show that photogenerated holes and electrons in the frameworks have long lifetimes and display recombination kinetics typical of dissociated charge carriers. Moreover, the reduced acceptors form polarons in which the electron is shared over several molecules. The G-quadruplex frameworks also demonstrate potential as cathode materials in Li-ion batteries because of the favourable electron- and Li-ion-transporting capacity provided by the ordered rylene diimide arrays and G-quadruplex structures, respectively
    corecore