4 research outputs found

    On the word problem for SP-categories, and the properties of two-way communication

    No full text
    International audienceThe word problem for categories with free products and coproducts (sums), SP-categories, is directly related to the problem of determining the equivalence of certain processes. Indeed, the maps in these categories may be directly interpreted as processes which communicate by two-way channels. The maps of an SP-category may also be viewed as a proof theory for a simple logic with a game theoretic intepretation. The cut-elimination procedure for this logic determines equality only up to certain permuting conversions. As the equality classes under these permuting conversions are finite, it is easy to see that equality between cut-free terms (even in the presence of the additive units) is decidable. Unfortunately, this does not yield a tractable decision algorithm as these equivalence classes can contain exponentially many terms. However, the rather special properties of these free categories -- and, thus, of two-way communication -- allow one to devise a tractable algorithm for equality. We show that, restricted to cut-free terms s,t : X --> A, the decision procedure runs in time polynomial on |X||A|, the product of the sizes of the domain and codomain type

    Expansion nets: proof-nets for propositional classical logic

    No full text
    We give a calculus of proof-nets for classical propositional logic. These nets improve on a proposal due to Robinson by validating the associativity and commutativity of contraction, and provide canonical representants for classical sequent proofs modulo natural equivalences. We present the relationship between sequent proofs and proof-nets as an annotated sequent calculus, deriving formulae decorated with expansion/deletion trees. We then see a subcalculus, expansion nets, which in addition to these good properties has a polynomial-time correctness criterion

    CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions

    No full text
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies sNN=5.5TeV\sqrt{s_{NN}}= 5.5\,{\rm TeV} , will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction \u2014 Quantum Chromodynamics (QCD) \u2014 in extreme conditions of temperature, density and parton momentum fraction (low- x ). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low p T inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high p T hadrons which yield "tomographic" information of the hottest and densest phases of the reaction
    corecore