145 research outputs found

    Pedogenic pathways and deep weathering controls on soil organic carbon in Pacific Northwest forest soils

    Get PDF
    Characterizing the distribution and dynamics of organic carbon in soil is critical for quantifying changes in the global carbon cycle. In particular, weathering controls on near-surface and deep (>1 m) soil organic carbon (SOC) dynamics have been proposed but limited data prevents us from predicting SOC over topographically complex landscapes and quantifying how changes in climate and perturbations, such as wildfire or land management, influence SOC stocks. To advance our understanding of how weathering alters soil geochemistry and influences SOC storage, we synthesize previous data with a new analysis of the Siuslaw River soil chronosequence from terraces in the Oregon Coast Range, a region that harbors the richest SOC inventories in the continental US. We analyze how the relationships between soil geochemistry, physical properties, and SOC storage vary with weathering status and pathways across soils that span 0.041 to 990 kyr and vary in depth from 1 m to >10 m. To distinguish the key properties and processes influencing SOC storage at different depths, we break our analysis into three depth intervals: 0–30, 30–100, and >100 cm. Our results suggest that the processes that control SOC stocks vary systematically with time and depth owing to weathering impacts on soil properties and pedogenic development. At 30 kyr we observe a peak in SOC stock in the top 100 cm coincident with a peak in oxalate extractable Al and Fe concentrations, representing secondary poorly crystalline minerals, which is consistent with previous studies. We also observe a decline in shallow SOC stock for >30 kyr soils as poorly crystalline minerals are replaced by more stable crystalline forms and soils become clay dominated. At 120 kyr, SOC below 100 cm starts to contribute significantly to the total SOC profile inventory and by 990 kyr, this fraction composes >40% of the total SOC stock. Taken together, our results indicate that total SOC stock increases with soil age as the increased intensity of bedrock weathering deepens the critical zone, creating accommodation space for deep SOC storage. These findings reveal the intimate link between poorly crystalline minerals and SOC and suggest that systematic analysis of soil development in the critical zone provides a first-order constraint on SOC stocks

    Quantifying erosion rates and weathering pathways that maximize soil organic carbon storage

    Get PDF
    Primary minerals that enter soils through bedrock weathering and atmospheric deposition can generate poorly crystalline minerals (PCM) that preferentially associate with soil organic carbon (SOC). These associations hinder microbial decomposition and the release of CO₂ from soils to the atmosphere, making them a critical geochemical control on terrestrial carbon abundance and persistence. Studies that explore these relationships are typically derived from soil chronosequences that experience negligible erosion and thus do not readily translate to eroding landscapes. Here, we propose a theoretical framework to estimate steady-state PCM density and stocks for hilly and mountainous settings by coupling geochemical and geomorphic mass balance equations that account for soil production from bedrock and dust, soil erosion, PCM formation from weathering, and the transformation of PCMs into crystalline phases. We calculate an optimal erosion rate for maximum PCM abundance that arises because PCMs are limited by insufficient weathering at faster erosion rates and loss via “ripening” into more crystalline forms at slower erosion rates. The optimal erosion rate for modeled hilltop soil is modulated by reaction rate constants that govern the efficiency of primary mineral weathering and PCM ripening. By comparing our analysis with global compilations of erosion and soil production rates derived from cosmogenic nuclides, we show that landscapes with slow-to-moderate erosion rates may be optimal for harboring abundant PCM stocks that can facilitate SOC sequestration and limit turnover. Given the growing array of erosion-topography metrics and the widespread availability of high-resolution topographic data, our framework demonstrates how weathering and critical zone processes can be coupled to inform landscape prioritization for persistent SOC storage potential across a broad range of spatial and temporal scales

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Water balance creates a threshold in soil pH at the global scale

    Full text link
    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate

    Nutrients cause grassland biomass to outpace herbivory

    Get PDF
    Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Pedogenic Thresholds and Soil Process Domains in Basalt-Derived Soils

    Get PDF
    Pedogenic thresholds occur where soil properties change abruptly and/or nonlinearly with a small increment in environmental forcing; soil process domains are the regions between thresholds where soils change much more gradually across a large range of environmental forcing. We evaluated thresholds and domains in basalt-derived soils on two rainfall gradients in Hawaii-one from 260 to 3,540 mm/y precipitation on 150,000-year-old substrate, the other from 600 to 3,760 mm/y on 4,100,000-year-old substrate. We identified thresholds associated with the initiation of biological uplift of nutrients at about 700 mm/y on the younger substrate, the depletion of primary minerals at about 2,100 mm/y on the younger and about 900 mm/y on the older substrate, and the initiation of anoxic conditions and associated Fe mobility at about 2,500 mm/y on the older substrate. These thresholds delineated process domains characterized by pedogenic carbonate accumulation and wind erosion (dry young substrate); by weathering and biological uplift of nutrients (intermediate rainfall young substrate and dry old substrate); by surface Fe enrichment and nutrient depletion (wet young substrate and intermediate rainfall old substrate); and by Fe mobilization and loss (wet old substrate). Soils on the older substrate were more highly weathered, lower in total and available P, and characterized by more crystalline clays than otherwise comparable soils on the younger substrate. Prior to European contact, Hawaiian cultivators developed an intensive rainfed agricultural system in the weathering/biological uplift domain on the younger substrate; we suggest that only this domain could support indigenous agricultural intensification in upland soils. © 2013 The Author(s)
    corecore