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          1   Introduction 

 Because of the large number of sites they pollute, toxic metals that contaminate 
 terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu 
et al.  2010,   2011 ; Shahid et al.  2011a,   b,   2012a  ) . Among such metals is zirconium 
(Zr), which has the atomic number 40 and is a transition metal that resembles tita-
nium in physical and chemical properties (Zaccone et al.  2008  ) . Zr is widely used in 
many chemical industry processes and in nuclear reactors (Sandoval et al.  2011 ; 
Kamal et al.  2011  ) , owing to its useful properties like hardness, corrosion-resistance 
and permeable to neutrons (Mushtaq  2012  ) . Hence, the recent increased use of Zr 
by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have 
enhanced environmental levels in soil and waters (Yirchenko and Agapkina  1993 ; 
Mosulishvili et al.  1994 ; Kruglov et al.  1996  ) . 

 Zr is the twentieth most common element in the earth’s crust (Fodor et al.  2005  ) . 
Zr is generally considered to be immobile in soil (Muhs et al.  2007,   2010 ; Muhs and 
Budahn  2009 ; Aznar et al.  2009 ; Feng  2010,   2011 ; Little and Lee  2010 ; Hao et al. 
 2010 ; Bern et al.  2011  ) , because it has low water solubility and a strong tendency to 
polymerize (Clear fi eld  1964  ) . Moreover, Zr forms strong complexes with soil com-
ponents, via zirconium dioxide and zirconocene dichloride, among others. The rate 
of adsorption/desorption of Zr to soil depends on its speciation and the characteris-
tics of the soil involved. This element can be mobile in soil under a wide range of 
geological settings such as tropical weathering (Duvallet et al.  1999 ; Kurtz et al. 
 2000 ; Hodson  2002 ; Davydov et al.  2006  ) . 

 Soil–plant transfer is an important link in the chain of events that leads to radio-
nuclide entry into the human food chain. However, few studies have been performed 
on Zr transfer to plants (Shi and Guo  2002  ) . Such soil–plant transfer may be 
in fl uenced by both the characteristics of the plants (species, variety, maturity, etc.) 
and soils involved. Generally, plants absorb elements as ions or small complexes 
(Kabata-Pendias and Pendias  1992  )  in the soil solution. 

 Compared to other  fi ssion products (e.g., Sr, Cs, and Co), few data exist on the 
environmental behavior and fate of Zr (Couture et al.  1989 ; Garnham et al.  1993  ) . 
Our goal in this review is to describe the following aspects of Zr: (1) isotopes and 
sources; (2) retention, mobility, and bioavailability in soils; (3) speciation in soil; 
(4) plant uptake and translocation to aerial parts; and  fi nally (5) phytotoxicity.  

    2   Zr Minerals, Isotopes, and Sources 

 Relative to other inorganic trace elements, Zr has a high natural abundance in the 
earth’s crust (Jones  1998 ; Martínez Cortizas et al.  2003 ; Chow et al.  2003 ; Alleman 
et al.  2010 ; Kumpiene et al.  2011  ) . The natural level of Zr in soils varies from 32 to 
850 mg/kg (Kabata-Pendias and Pendias  1992 ; Fodor et al.  2005  ) . Bowen  (     1979  )  
gave 400 mg/kg as an average Zr soil concentration, and    Pais and Jones  (  1983  )  



reported a value of 250 mg/kg. In soil, Zr is more than twice as abundant as copper 
and zinc and has ten times the abundance of lead. Its geochemistry is dominated by 
its lithophilic nature: Zr occurs in more than 140 recognized mineral species, but 
zircon (ZrSiO 

4
 ) and baddeleyite (ZrO 

2
 ) are the main naturally observed compounds 

(Ryzhenko et al.  2008  ) . The order of Zr content in various types of rock is ultrabasic 
rocks < granite rocks < alkaline rocks (   Kovalenko and Ryzhenko 2009). A-type 
granite is characterized by having high concentrations of Zr, and accessory minerals 
such as zircon and monazite (Jung et al.  2000 ; Sako et al.  2009  ) . The highest Zr 
content values appear in agpaitic nepheline syenites, carbonatites, and peralkaline 
granites: 34 mg/kg in ultra basic rocks, 150 mg/kg in intermediate rocks, 200 mg/kg 
in silicic rocks, 820 mg/kg in alkaline rocks, and 1,120 mg/kg carbonatites 
(Ryzhenko et al.  2008  ) . Zircon and baddeleyite are weathering resistant and form 
placers, which are the main commercial sources of Zr (Ryzhenko et al.  2008  ) . 

 Naturally occurring Zr contains  fi ve stable isotopes (Ryzhenko et al.  2008 ; 
Caffau et al.  2010  ) . Among these,  90 Zr is the most common form, comprising 51% 
of natural Zr. The other four stable isotopes and their relative abundances are  91 Zr 
(11%),  92 Zr (17%),  94 Zr (17%), and  96 Zr (2.8%) (Ryzhenko et al.  2008  ) . In addition 
to these stable natural isotopes of Zr, 28 arti fi cial isotopes have been manufactured, 
ranging in atomic mass from 78 to 110. Among these arti fi cial isotopes,  93 Zr is the 
longest-lived [half-life ( T  

1/2
 ) of 1.53 × 10 6  years] and  110 Zr is the heaviest and shortest-

lived arti fi cial isotope ( T  
1/2

  30 ms).  93 Zr decays to niobium ( 93 Nb) by emitting a beta 
particle of 0.02 million electron volts radiation energy. Nb, in turn, decays by iso-
meric transition by emitting beta and gamma particles of 0.028 and 0.0019, respec-
tively. The Zr isotopes, with mass numbers between 88 and 104, have been 
characterized by high  fi ssion yields ranging from 5.8 to 6.3%. 

 Both geogenic and anthropogenic sources for Zr exist, the  fi rst generally being 
more abundant (Abollino et al.  2002 ; Schulin et al.  2007 ;    Brun et al.  2008 ; Little 
and Lee  2010  ) . The unique physical–chemical properties of Zr has enhanced its 
industrial use and has produced higher anthropogenic emissions to the environment 
from several sources: nuclear fallout, ceramic dusts, and heavy metal mining, 
improper waste dumping, abandoned industrial activity sites, incidental release 
(e.g., leakage, corrosion), and atmospheric fallout (Chow et al.  2003 ; Schulin et al. 
 2007 ; Little and Lee  2010 ; Bhuiyan et al.  2010  ) . The Zr applications most valued by 
include uses that require high resistance to corrosive agents, component use in vac-
uum tubes, alloying agent for steel, surgical instrument applications, photo fl ash 
bulbs, explosive primers, lamp  fi laments and as a component of gems. The alloys of 
Zr are utilized as refractory materials, a cladding material for nuclear fuel elements, 
and a component of explosive primers, rayon spinnerets and superconductive mag-
nets (Yau  2010  ) . Recently, Dou et al.  (  2011  )  reported that a granular zirconium–iron 
oxide alloy can be used to remove  fl uoride from drinking water. The increased use 
of Zr by many industries has increased annual production from mines where it is 
sourced (Fig.  1 ; USGS  2012  ) .  

 Zr has a diversity of uses. Zr is known as an ideal material for nuclear reactor 
applications, due to its low absorption cross-section for neutrons (Mushtaq  2012  ) . 
The use of Zr in commercial nuclear power generation now accounts for as much as 



90% of the Zr metal that is produced. The  93 Zr isotope is long-lived ( T  
1/2

  of 10 6  years). 
This isotope occurs largely in radioactive wastes as a  fi ssion reaction by-product 
(   Naudet  1974  ) . Because of its relatively short half-life, the  89 Zr isotope ( T  

1/2
  of 

78.4 h) is a promising positron-emitting surrogate for  90 Y in radio immunotherapy 
(Verel et al.  2003  ) . Zr is also used for its incendiary effect in weapons such as the 
BLU-97/B combined effects bomb. Moreover, Zr is detected in phosphate fertilizers 
and in calcium cyanamide (range 0.38–8.24 mg/kg) (Senesi et al.  1988  ) . Traces of 
Zr also exist in sewage sludge (5–90 mg/kg), limestone (20 mg/kg), and animal 
manure (5 mg/kg) (   Kabata-Pendias  1993 ). 

 Abollino et al.  (  2002  )  and Bhuiyan et al.  (  2010  )  reported that anthropogenic 
activities can modify the amount and nature of Zr that is present in soils and should 
be considered as a possible soil pollutant. Finally, the growing environmental abun-
dance of Zr has increased researcher interest in measuring the levels at which it 
exists in living organisms (Ghosh et al.  1992  ) .  

    3   Retention, Mobility, and Bioavailability of Zr in Soils 

 Metal bioavailability is de fi ned as the fraction of total metal in soil that can be 
absorbed by a biological target (Shahid et al.  2012b  ) . The degree to which a metal is 
bioavailable depends on its soil mobility. Opinions vary on how mobile/bioavailable 
Zr is in soil. Certain authors (Chadwick et al.  1990 ; Bain et al.  1994 ; Hodson  2002  )  
believe that Zr is very slightly mobile in soils as a result of its binding to highly 
insoluble oxides, chloride, and silicates that are resistant to weathering (Kabata-
Pendias   1993 ; Smith and Carson  1978 ; Prisyagina et al.  2008  ) . Blumenthal  (  1963  ) , 
in contrast, believes that zirconium oxide is almost insoluble in water, acid and 
alkali solutions, and organic solvents and therefore is not mobile. Indeed, the mobility 

  Fig. 1    Annual world mine production of Zr in 000 metric t (from USGS  2012  )        

 



and/or bioavailability of Zr depend on its chemical form. Certain chemical forms of 
Zr (e.g., zirconium carbide and zirconium oxychloride) are slightly soluble, whereas 
others are insoluble in water (zirconium oxide, zirconium hydroxide, and zirconium 
phosphate) (Venable  1922  ) . 

 Zr has a  fi xed crystalline structure in many of the minerals in which it appears 
(Horvath et al.  2000  ) . This structure of Zr changes very slowly over time from the 
effects of weathering. The more Zr minerals are weathered the more they change. 
Hence, one can use the degree of weathering of Zr-containing minerals that appear 
in soil to track the geologic age of some minerals. Therefore, Zr is used as a tool to 
estimate long-term weathering rate for rocks that exist in soils (   Hill et al.  2002 ;    Egli 
and Fitze  2001 ; Patino et al.  2003 ; Zaccone et al.  2008  ) . 

 The total quantity of an immobile element in a given soil horizon is not unaffected 
by the weathering processes (Hodson  2002  ) , although the element’s concentration 
may change from loss or addition of other elements or from the addition of organic 
matter. Goldich  (  1938  )  and Pettijohn  (  1941  )  investigated the durability of Zr in 
weathered rock and found that zircon was the most persistent mineral in a wide range 
of igneous, metamorphic and sedimentary rocks. Tejan-Kella et al.  (  1991  )  recorded 
etch-pitted zircon grains only in soils that were 100,000 years old. The chemical 
composition of zircon mineral is used to elaborate many magmatic processes, includ-
ing the interaction with hydrothermal  fl uids (Thomas et al.  2002 ; Hoskin  2005  ) , 
crystal fractionation (Pettke et al.  2005 ; Lowery Claiborne et al.  2006  ) , and/or 
magma mixing (Wang et al.  2002 ; Belousova et al.  2006  ) , as well as being a potential 
source indicator (Aja et al.  1995 ; Belousova et al.  2002 ;    Gagnevin et al.  2009  ) . 

 Zr is highly resistant to acidic weathering and is widely used to predict the struc-
ture of parent rocks (Valeton et al.  1987 ; Kurtz et al.  2000 ; Panahi et al.  2000 ; 
Calagari and Abedini  2007  ) . The ratio of Zr to other metals like Hf or Ti is highly 
useful to determine the crystallization sequences of rocks (Zaraisky et al.  2009  ) . 
Therefore, Zr/Hf and Ti/Zr concentration ratios are employed to trace possible pre-
cursor rock(s) that exist in ores (Kurtz et al.  2000 ; Zaraisky et al.  2008,   2009 ; Hao 
et al.  2010 ; Bern et al.  2011  ) . The ratios of immobile elements (e.g., Ti/Zr) in baux-
ite are similar to those of the parent rock (Valeton et al.  1987  )  and can be used to 
determine source rocks (Calagari and Abedini  2007  ) . The concentration ratios of 
other element combinations have been successfully used to infer the derivation of 
soils (Sommer et al.  2000  ) . 

 In contrast to the opinion of other researchers mentioned above, Whit fi eld  (     2011  )  
and Bern et al.  (  2011  )  concluded that Zr was mobile in soils. The mobility of Zr 
relative to Nd in commercial reactors was also reported by Maeck et al.  (  1975  ) . Hill 
et al.  (  2002  )  and Kurtz et al.  (  2000  )  have shown that immobile elements like Zr (or 
Y and Th) are redistributed within the weathered soil pro fi le. This redistribution 
may result from physical, chemical, and biological processes that operate on the 
earth’s surface (Anderson et al.  2002 ; Che et al.  2012  ) . Petrographic evidence 
(   Rubin et al.  1993 ; Flohr and Ross  1990  )  suggests that Zr may be mobile in soil 
under a wide range of geological settings (Hao et al.  2010 ; Malandrino et al.  2011 ; 
Ribeiroa et al.  2010 ; Liu et al.  2010  ) . 



 In addition to origin (whether natural or anthropogenic), several other factors 
in fl uence the mobility of Zr in soils, such as soil characteristics, interactions with 
organic matter, and climate (Ferrand et al.  2006 ; Davydov et al.  2006  ) . These fac-
tors, separately or in combination, affect the bioavailability of Zr, particularly when 
adsorption/desorption processes are involved (   Klechkovsky and Gulyakin  1958 ; 
Schulin et al.  2007  ) . 

 The effects of pH greatly in fl uences metal partitioning between the soil solid and 
solution phases (Peng et al.  2009 ; Shahid et al.  2011b  ) . Soil pH affects adsorption/
desorption reactions, speciation, and mobility of heavy metals in soils (Davydov 
et al.  2006 ;    Wu and Hendershot  2010 ; Zou et al.  2009 ; Bali et al.  2010 ; Shahid et al. 
 2011c  ) . In strongly acidic solutions, the polynuclear hydrolysis species are formed 
and control Zr solubility and mobility in solution. Under less acidic conditions, 
mononuclear hydrolysis species are more predominate. Under alkaline solutions, 
solubility increases form the formation of the zirconate ion. 

  Soil texture  also in fl uences the behavior of Zr. Metals generally have a strong 
af fi nity for the soil-clay fraction (Owojori et al.  2010  ) , and that  fi ne soil fraction is 
often pollutant enriched. In contrast, Zr is mainly present as zircon grains in the 
coarse fractions of soils (Stiles et al.  2003 ; Caspari et al.  2006  ) . However, Zr sorp-
tion onto the solid surfaces of soil may in fl uence its mobility and bioavailability 
(Klechkovsky and Gulyakin  1958 ; Udovic and Lestan  2009 ; Rascio and Navari-
Izzo  2011  ) . Competing ions (viz., H, Ca, Mg, Na, Fe, and K) affect these adsorption 
reactions. 

  Soil organic   matter  ( SOM ) also plays a key role in governing the mobility/
bioavailability of metals in soil (Dessureault-Rompré et al.  2010  ) . Soil organic con-
tent affects the mobilization of Zr, because this element may be adsorbed by it, or 
may form stable complexes with it (Ferrand et al.  2006  ) . Such interactions may 
result from the interaction of metal ions with the acidic binding sites on carboxylic 
and phenolic hydroxyl groups of SOM (Oliva et al.  1999 ; Viers et al.  2000 ; 
Pokrovsky and Schott  2002  ) . Oliva et al.  (  1999  )  and Viers et al.  (  2000  )  recorded 
relatively high Zr concentrations (0.01–0.6 g/kg) in organic-rich soils (10–35  m g/g 
dissolved organic carbon). Oliva et al.  (  1999  )  measured high Zr concentrations in a 
small tropical watershed in South Cameroon and believed that they were the result 
of zircon weathering that was enhanced by organic matter. LeRiche  (  1973  )  detected 
Zr in hydrogen peroxide extracts of soils, which indicated that Zr may be associated 
with the organic matter fraction of soils. SOM also indirectly affects metal mobility 
in soil via its effects on soil properties (i.e., pH, cation exchange capacity, particle 
size distribution, cracking pattern and porosity, soil solution composition, microbial 
and enzyme activities) (Shahid et al.  2012b  ) . 

 The extent of Zr mobility also varies according to climatic conditions. Under 
temperate and tropical weathering conditions, biotite is decomposed and zircon is 
released into the soil column, and it is subsequently redeposited in deep horizons 
(Swindale and Jackson  1956 ; Cornu et al.  1999  ) . Under low rainfall, Zr may pre-
cipitate or coprecipitate with Fe oxides and become immobilized. In contrast, 
Zr may become mobile under more severe weathering conditions and the presence 
of high organic matter content (Dupré et al.  1996 ; Hodson  2002 ; Braun et al.  2005  ) . 



In soils exposed to intensive chemical weathering, topsoil generally contains higher 
amounts of Zr as zircon minerals, compared to deeper horizons (Hodson  2002 ; 
Stiles et al.  2003  ) . Abollino et al.  (  2002  )  reported higher concentrations of Zr in 
chemically weathered surface than in deep soil samples. Hence, there is a notion 
that the mobility of Zr is site-speci fi c.  

    4   Zr Speciation 

 The biogeochemical behavior of an inorganic element in an ecosystem, and its 
potential effects on plants, are strongly in fl uenced by its speciation (Stojilovic et al. 
 2005 ; Fodor et al.  2005 ; Davydov et al.  2006 ; Dumat et al.  2006 ; Ryzhenko 
et al.  2008 ; Prisyagina et al.  2008 ; Kopittke et al.  2008 ; Louvel et al.  2009 ; Uzu et al. 
 2009 ; Shahid et al.  2012b,   c  ) . Speciation is the existence of a metal in different 
chemical forms as a result of being exposed to different environmental conditions 
(Dumat et al.  2006 ; Louvel et al.  2009 ; Shahid et al.  2011c  ) . As mentioned, Zr spe-
ciation strongly depends on soil pH and SOM interactions. Zr exists in several forms 
in the soil and in liquid media, and these forms have different levels of solubility 
and bioavailability (Fodor et al.  2005 ; Davydov et al.  2006 ; Ryzhenko et al.  2008 ; 
Prisyagina et al.  2008 ; Louvel et al.  2009  ) . Different Zr species affect the solubility, 
mobility, and uptake of Zr by plants (Davydov et al.  2006 ; Ferrand et al.  2006 ; 
Ryzhenko et al.  2008  ) . Therefore, although it is relatively easier to measure, one 
cannot rely on the total Zr content in a plant as an indicator of uptake and toxicity 
(Shahid et al.  2012b  ) . Therefore, to improve the understanding of risk and what 
constitutes realistic remediation depends heavily upon measuring the relevant spe-
cies of Zr that exists in soil as well as those taken into plants. 

 Zr presents different oxidation states (varies from +2 to +4), +4 being the form 
of the predominant stable valence; bonding with oxygen is the prevailing and most 
common reaction for Zr (Kabata-Pendias  1993 ). The Zr crustal abundance ranges 
from 20 to 500 mg/kg, and its aqueous chemistry is dominated by the quadrivalent 
oxidation state (valence electron con fi guration 4 d 2 5 s  ¢ ) (Ryzhenko et al.  2008  ) . The 
lower oxidation states of Zr (0, I, II, and III) occur only in nonaqueous solvents and 
fused salts (   Cotton and Wilkinson  1980 ). Due to high ionic potential (22.54 e 2 /Å), 
Zr is the most polarizing among the heavier transition and post-transition quadriva-
lent cations. The extent of hydrolysis and polymer stoichiometry depends on the 
nature of the ionic media (Davydov et al.  2006  ) , with tetramer and trimer forms 
being the most common stoichiometry. Moreover, hydrolysis and polymerization 
reactions dominate in the presence of high  fi eld strength cations that are capable of 
rupturing H–O bonds. Similarly, hydrolysis and polymerization is promoted in alka-
line solutions and with increasing temperatures. 

 How Zr reacts in aqueous media (soil solution) is still the subject of controversy. 
The zirconium oxide and hydroxide have low solubility and precipitate at low pH. 
This is because Zr hydrolyses and precipitates as polynuclear species in strongly 
acidic solutions (pH < 1) (Baes and Mesmer  1986 ; Ekberg et al.  2004  ) . Davydov 



et al.  (  2006  )  and Ryzhenko et al.  (  2008  )  evaluated the hydrolysis and precipitation 
of Zr as a function of pHs between 0 and 14 and generally show that Zr precipitation 
reactions occur at low pH (about 2) (Ryzhenko et al.  2008 ; Prisyagina et al.  2008  ) . 
In the pH range 0.6–2.3, potentiometric measurements indicated the presence of 
both the mononuclear form [Zr(OH) 

3
 ] +  (at a low Zr concentration) and the poly-

meric species [Zr 
4
 (OH) 

8
 ] 8+  and [Zr 

2
 (OH) 

6
 ] 2+ . This latter polymeric species predomi-

nated at low total Zr concentrations (10 −5  M). At higher pH, solvent extraction 
measurements indicated the presence of three mononuclear species: [Zr(OH) 

2
 ] 2+ , 

[Zr(OH) 
3
 ] + , Zr(OH) 

4
  (Davydov et al.  2006 ; Ryzhenko et al.  2008  ) . Under tetrava-

lent oxidation conditions, Zr acts as a hard acid: electrostatic, rather than covalent 
forces dominate its complexation with inorganic ligands in the following order 
of decreasing stability: OH −  > F −  PO  

4
  2−   > ClO  

4
  2−   > SO  

4
  2−   > CO  

2
  −   > NO  

3
  −   > Cl −  > ClO  

4
  −  . 

Complexation reactions involving OH −  and F −  ions have received the most attention, 
and speciation studies have generally been conducted in perchlorate media.  

    5   Plant Uptake of Zr from Soil and Translocation 

to Aerial Parts 

 Soil–plant transfer is an important link in the chain of events that leads to the entry 
of metals into the food chain. Unfortunately, little data are available concerning the 
transfer of Zr to plants (Wang et al.  2000 ; Shi et al.  2002  ) . Zr is less soluble than 
other metals (e.g., Pb and Cd) and tends to exist as an insoluble particulate. 
Consequently, only a small fraction of zirconium is available for plant uptake 
(Ferrand et al.  2006 ; Uzu et al.  2009 ; Hao et al.  2010 ; Muhs et al.  2010 ; Feng  2011 ; 
Bern et al.  2011  ) , because of strong binding with organic and inorganic ligands in 
soils (Sammut et al.  2010 ; Vega et al.  2010 ; Shahid et al.  2012b  ) . By contrast, Sako 
et al.  (  2009  )  stated that the least mobile elements (e.g., Zr, Ti, Sc, Al, and Th) have 
a low residence time in the soil solution. However, Tematio et al.  (  2009  )  concluded 
that Zr is more strongly available in the B soil horizons. 

 Unlike other heavy metals (e.g., Pb, Cd, and Ni), the way Zr enters plants is not 
well understood. The main pathway by which Zr is taken up by plants is soil–root 
transfer (Ferrand et al.  2006  ) . Zr is mainly taken up as the tetravalent cation in soil 
solution (Whicker and Schultz  1982  ) . Zr adsorption on root surfaces (Chaignon and 
Hinsinger  2003  )  is a minor phenomenon and such absorption is mainly driven by 
nonselective water and nutrient  fl uxes (Ferrand et al.  2006  ) . Zr may enter roots pas-
sively and follow translocating water streams. At the molecular level, the mecha-
nism by which Zr enters roots is still unknown. Zr can enter the plant roots via 
different pathways, especially through ionic channels as does Pb. Entry into plants 
by Zr may depend on the functioning of an H + /ATPase pump to maintain a strong 
negative membrane potential in rhizoderm cells (Hirsch et al.  1998  ) . Some authors 
suggested that kinetic-dependant absorption of the metal occurs; the initial phase 
representing rapid entry into root-free space and binding to the cell walls, and the 
subsequent slower phase resulting from transport across the plasma membrane into 
the cytoplasm (Maria and Cogliatti  1988  ) . 



 The rate of Zr entry into plant roots signi fi cantly depends on its chemical form in 
the soil solution. Ferrand et al.  (  2006  )  observed higher Zr concentrations in the roots 
of  Pisum sativum  and in tomato plants for the acetate and oxychloride forms than 
the hydroxide or oxide forms. Shi and Guo  (  2002  )  studied the absorption of Zr by 
 Brassica rapa  that was cultivated on a loamy soil. They observed that when Zr was 
applied by soil surface irrigation,  95 Zr was distributed equally between root and 
shoot. However, when Zr was applied as spray on plant leaves, Zr concentration was 
greater in roots than shoot. Zirconium ascorbate has been reported by Fodor et al. 
 (  2003  )  to be accumulated from nutrient solution at a signi fi cant rate by  Chlorella 

pyrenoidosa  cells (   Simon et al.  1998  ) . This phenomenon may have practical impor-
tance in removing Zr from contaminated aquatic environments. Interactions between 
organic ligands and metals in natural media have been extensively studied because 
of their affect on metal availability (Ferrand et al.  2006 ; Quenea et al.  2009 ; Yip 
et al.  2010  ) . Synthetic or natural organic ligands have been extensively used to 
enhance plant uptake of metals in remediation studies (Evangelou et al.  2007 ; 
Saifullah et al.  2009,   2010 ; Yip et al.  2010 ; Shahid et al.  2012b  ) . In addition to 
organic ligands, plant root exudates, which generally include acetic, oxalic, fumaric, 
citric, and tartaric acids, also affect Zr solubility in soil and its uptake by plants 
(   Hinsinger et al.  2009,   2011  ) . Langmuir and Herman  (  1980  )  showed that for tho-
rium (a chemical analogue of Zr), oxide solubility and availability were increased 
by organic ligand addition. 

 The penetration of an element into a plant can be assessed by assessing the trans-
fer factor (TF) from soil to plant (TF is generally de fi ned as the ratio between the 
concentration in plants and the soil) (Arshad et al.  2008 ; Bi et al.  2010 ; Liu et al. 
 2010  ) . This TF depends on soil physical and chemical properties and plant type 
(Arshad et al.  2008 ; Bi et al.  2010 ; Liu et al.  2010  ) . The TF value permits research-
ers to integrate information on the initial total stock of Zr, and therefore to better 
compare Zr availability under various experimental conditions (Ferrand et al.  2006  ) . 
A TF value equal to 0.01 corresponds to a low metal absorption rate and a TF value 
of 10 indicates that the plant accumulates the metal. The mean TF value obtained by 
Tome et al.  (  2003  )  for Zr uptake by grass-pasture grown in soils near a uranium 
mine was 0.09. Actually, several authors have reported that Zr accumulates in vari-
ous food crop parts if the crops were grown on Zr-contaminated soil (Sanzharova 
and Aleksakhin  1982 ; Fodor et al.  2002  ) . Sanzharova and Aleksakhin  (  1982  )  con-
cluded that Zr was taken up by barley, corn, and alfalfa. Gundersen et al.  (  2000  )  
observed that Zr was absorbed by  P. sativum  (between 0.425 and 5.29  m g/kg of Zr 
per fresh wt). In any event, plants accumulate signi fi cantly lower Zr concentrations 
than exists in the soil in which they grow (Smith and Carson  1978 ; Sanzharova and 
Aleksakhin  1982  ) . Kabata-Pendias ( 1993 ) indicated that the Zr levels found in food 
plants vary from 0.005 to 2.6 mg/kg. 

 After penetrating the central plant cylinder, metals translocate to shoots via the 
water  fl ow of the vascular system (Krzeslowska et al.  2010  ) . While passing through 
the xylem, Zr may form complexes with amino acids such as histidine, or organic 
acids, as do Pb and Cd (Ferrand et al.  2006 ;    Vadas and Ahner  2009 ; Maestri et al. 
 2010 ; Rascio and Navari-Izzo  2011  ) , or may be transferred in inorganic form. 
Transportation of metals from the roots to the shoots requires movement through the 



xylem (Verbruggen et al.  2009  )  and is probably driven by transpiration (Liao et al. 
 2006 ; Shahid et al.  2011b  ) . The translocation rate of Zr in higher plants is low 
(Sanzharova and Aleksakhin  1982 ; Kabata-Pendias  1993 ; Ferrand et al.  2006  ) . Like 
Pb, generally more that 90% or more of absorbed Zr is accumulated in plant roots 
(Kabata-Pendias and Pendias  1992 ; Wang et al.  2000 ; Shi et al.  2002 ; Klechkovsky 
and Gulyakin  1958 ; Ferrand et al.  2006 ; Yan et al.  2010 ; Gupta et al.  2010 ; Jiang 
and Liu  2010  ) . 

 Restrictions in metal translocation may result from blockage by the Casparian 
strip, accumulation in plasma membrane, precipitation as insoluble Zr or immobili-
zation by negatively charged exchange sites within the cell wall, or sequestration in 
the vacuoles of rhizodermal and cortical cells. Kabata-Pendias and Pendias  (  1992  )  
reported a higher increase of Zr content in nodules and roots of legumes than in 
aerial parts. Wang et al.  (  2000  )  found the same result for soybean plants that were 
cultivated in a radio contaminated soil, even for a longer growing period (up to 
60 days after sowing). Shi et al.  (  2002  )  found that Zr in  Oryza sativa  was concen-
trated in the roots and lower part of the stem. Ferrand et al.  (  2006  )  observed a sev-
eral fold increase in the accumulation of Zr in root of  P. sativum  and  Solanum 

lycopersicum  plants, when the plants were grown in Zr-spiked soil. Enhanced 
sequestration in root cells, with limited translocation to shoot tissues is a typical 
feature of metal excluders (Baker  1981  ) . A low Zr concentration in the edible parts 
of plants, even in very contaminated soils is an important result in terms of sanitary 
risk linked to vegetable eating. Additional studies on Zr that address movement and 
accumulation in numerous other plant species are needed. In particular, data are 
needed on the distribution of Zr in leafy or root vegetables and should emphasize 
the consumed parts of the vegetables.  

    6   Zr Toxicity to Plants 

 Metal toxicity depends not only on total concentration but also on metal speciation 
and interactions with soil components. Zr has no known biological function in plant 
or animal metabolism (Blumental  1976  ) . Although effects vary with Zr dose and 
speciation, exposure has produced either stimulatory or toxic effects in algae, yeasts, 
bacteria,  fi sh, and higher plants (Smith and Carson  1978 ; Couture et al.  1989 ; 
Abollino et al.  2002 ; Shi and Chen  2002 ; Shi and Li  2003 ; Fodor et al.  2005  ) . 
Although data are scarce, it appears that the stable isotopes of Zr have low toxicity 
to organisms (Blumental  1976 ; Couture et al.  1989  ) . Zr caused slight toxicity in 
young  Hordeum vulgare  by decreasing biomass (Davis et al.  1978  ) . A signi fi cant 
in fl uence of Zr–Ascorbate on intracellular chemical composition or chlorophyll 
content was observed to occur in various plants exposed to Zr:  C. pyrenoidosa  or 
 Triticum aestivum  (Simon et al.  1998 ; Fodor et al.  2005  ) . Ferrand et al.  (  2006  )  
reported a slight decrease in dry weight of  P. sativum  and  S. lycopersicum  plants 
from a high accumulation of Zr. 



 Zr is also reported to stimulate or inhibit enzymes in plant cells. Inhibition of 
Zr-induced phosphate-dependent enzymes was reported by Smith and Carson 
 (  1978  ) . Fodor et al.  (  2005  )  reported a Zr-induced increase in peroxidase (POD) 
activity, whereas decreased ascorbate peroxidase (APX) and glutathione reductase 
(GR) activities occurred in  T. aestivum . Simon et al.  (  1998  )  reported a Zr-induced 
modi fi cation of enzymatic activity in  C. pyrenoidosa . Similar results were obtained 
by Ti-ASC (which has similar physical and chemical activities as that of Zr) in 
 T. aestivum  and  Zea mays  (Pais  1983  )  and in  Capsicum annuum  (Carvajal et al. 
 1994  ) . Furthermore, after Zr application, Fodor et al.  (  2005  )  reported a marked 
decrease in the total phenol content of plant tissues. 

 The mechanism behind Zr-induced inhibition of growth or modi fi cation in enzyme 
activities is not known, but may be explained in terms of the possible mechanisms 
responsible for these physiological changes in plants. Heavy metal accumulation in 
plant tissue is toxic to most plants and interferes with various morphological, physi-
ological, and biochemical process (Shahid  2010  ) . Inside a cell, these metals impair 
photosynthesis, respiration, mineral nutrition, and enzymatic reactions (Maestri et al. 
 2010 ; Ali et al.  2011  ) . The primary response of plants to heavy metal toxicity is the 
generation of reactive oxygen species (ROS) (Pourrut et al.  2008 ; Mirza et al.  2010 ; 
Rascio and Navari-Izzo  2011 ; Ali et al.  2011 ; Xu et al.  2011  ) . Such ROS include, 
superoxide radicals (O  

2
  •−  ), hydroxyl radicals ( • OH), and hydrogen peroxide (H 

2
 O 

2
 ) 

and are also produced during normal cell metabolism in the chloroplast, either as 
by-products of the reduction of molecular oxygen (O 

2
 ) or its excitation in the pres-

ence of highly energized pigments. Excess ROS formed within cells from heavy 
metal exposure can provoke oxidation and modi fi cation of cellular amino acids, pro-
teins, membrane lipids, and DNA and produce oxidative stress (Pourrut et al.  2008 ; 
Grover et al.  2010 ; Yadav  2010 ; Qureshi et al.  2010 ; Rascio and Navari-Izzo  2011  ) . 

 To combat oxidative damage and prevent cell injury and tissue dysfunction, 
plants employ protective mechanisms (Benekos et al.  2010 ; Xu et al.  2011  ) . First, 
plants may resist metal entry into their cells by exclusion or by binding them to the 
cell wall or other ligands such as organic acids and amino acids, thereby rendering 
them harmless, as happens with Pb (Wu et al.  2011 ; Xu et al.  2011 ; Zeng et al. 
 2011  ) . Preventing metal entrance into roots is the  fi rst and major protective mecha-
nism adopted by plants against harmful metal effects (Meyers et al.  2008 ; Jiang and 
Liu  2010  ) . Metal complexation with carboxyl groups of pectins that exist in plant 
cell walls is the most important plant-cell resistant reaction to most metals like lead 
(Patra et al.  2004 ; Kopittke et al.  2007 ; Meyers et al.  2008 ; Krzeslowska et al.  2009, 
  2010 ; Jiang and Liu  2010  ) . In this manner, metals are accumulated in root cells and 
are not translocated to shoot tissues. Although Zr is generally not considered to be 
a toxic metal, its entry into plants via roots is blocked by its bonding with cell wall 
exchange sites (Ferrand et al.  2006  ) . Several authors have reported that Zr accumu-
lates in plant root cells and thereby reduces the amount translocated to shoot tissues 
(Kabata-Pendias  1993 ; Sanzharova and Aleksakhin  1982  ) . 

 A secondary defense system against metal toxicity is manifested via antioxi-
dants that combat increased production of ROS that are caused by metal exposure. 



These antioxidant enzymes include superoxide dismutase (SOD), catalase (CAT), 
peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR). 
There are also antioxidants of low molecular weight such as proline (PRO), cysteine 
(Cys), nonprotein thiol (NPT), ascorbic acid (AsA), and glutathione (GSH) that 
scavenge ROS, thereby prohibiting cell injury and tissue dysfunction (   Lyubenova 
and Schröder  2011 ;    Mou et al.  2011 ; Lomonte et al.  2010 ; Ali et al.  2011  ) .  

    7   Conclusions and Perspectives 

 Zr is a typical lithophile element that has special properties that render it useful for 
several former and present industrial and other applications. In this chapter, we address 
the biogeochemical behavior of Zr in soil–plant systems and its impact on the plants. 
The conclusions we reached from having performed this review are as follows.

    1.    Zr is abundant in the earth’s crust and forms stable complexes in soil with many 
different compounds, particularly with inorganic ligands like Cl −  and SO  

4
  2−  . The 

behavior of Zr is strongly affected by its geologic origin and speciation. Low pH 
and complexation with soil organic matter affects zirconium behavior in soils 
and increases its phytoavailability. The recent growing use of Zr in different 
industrial processes has produced increased concentrations in different environ-
mental compartments and in some cases has modi fi ed the speciation of Zr.  

    2.    Despite its presence and retention at quite high quantities in ecosystems, Zr has 
not yet been accused of affecting the speci fi c metabolic system of any organisms. 
Although zirconium enters plants, mainly through the roots from the soil solu-
tion, its mechanisms for doing so are still unknown. Once in the roots, Zr becomes 
sequestered in root cells and a limited amount is translocated to plant shoots. 
Depending on its speciation, Zr can induce phytotoxicity, such as affecting chlo-
rophyll content or modifying enzyme activity. Plant antioxidant enzymes may be 
a protective strategy against the toxicity of Zr.  

    3.    Finally, our review has disclosed that more data on the plant–soil behavior of Zr 
are needed. In particular, new plant species that are cultivated on different soil 
types that contain Zr are needed. Future studies should emphasize the mecha-
nisms that are involved in uptake and phytotoxicity of Zr and should assess the 
potential health risks associated with Zr-polluted plants that are consumed by 
humans. These are important goals in the context of the increasing amounts of Zr 
emissions to the environment.      

    8   Summary 

 Zirconium (Zr) is a transition metal that has both stable and radioactive isotopes. 
This metal has gained signi fi cant attention as a major pollutant of concern, partly 
because it has been prominent in the debate concerning the growing anthropogenic 



pressure on the environment. Its numerous past and present uses have induced 
signi fi cant soil and water pollution. Zr is generally considered to have low mobility 
in soils. The behavior of Zr particularly depends on the characteristics of the media 
in which it exists, and even its presence in the biosphere as a contaminate may affect 
its behavior. In this chapter, we describe the relationship between the behavior of Zr 
and its speciation in soils, its uptake and accumulation by plants, its translocation 
and toxicity inside plants, and mechanisms by which plants detoxify it. 

 Zr is abundant and occurs naturally in the earth’s crust. Zr emissions to the atmo-
sphere are increasing from anthropogenic activities such as its use in industry and 
nuclear reactors. Zr forms various complexes with soil components, which reduces 
its soil mobility and phytoavailabilty. The mobility and phytoavailabilty of Zr in 
soil depend on its speciation and the physicochemical properties of soil that include 
soil pH, texture, and organic contents. Despite having low soil mobility and phy-
toavailability, amounts of Zr are absorbed by plants, mainly through the root system 
and can thereby enter the food chain. 

 After plant uptake, Zr mainly accumulates in root cells. Zr does not have any 
known essential function in plant or animal metabolism. Although little published 
data are available, we conclude that the phytotoxicity of Zr is generally low. 
Notwithstanding, Zr can signi fi cantly reduce plant growth and can affect plant 
enzyme activity. When exposed to Zr-induced toxicity, plants possess numerous 
defense mechanisms to cope with the toxicity. Such strategies include Zr sequestra-
tion in plant roots and activation of various antioxidants. Because Zr may have 
impact on the biosphere, we believe it deserves to be evaluated in supplementary 
studies that will enhance the understanding of its behavior in soil–plant systems.      
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