7 research outputs found

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID

    DNA Vaccines for the Induction of Immune Responses in Mucosal Tissues

    No full text

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    No full text
    This work was supported by grants of the German Research Foundation (DFG: KR 4073/11-1; SFBTRR219, 322900939; and CRU344, 428857858, and CRU5011 InteraKD 445703531), a grant of the European Research Council (ERC-StG 677448), the Federal Ministry of Research and Education (BMBF NUM-COVID19, Organo-Strat 01KX2021), the Dutch Kidney Foundation (DKF) TASK FORCE consortium (CP1805), the Else Kroener Fresenius Foundation (2017_A144), and the ERA-CVD MENDAGE consortium (BMBF 01KL1907) all to R.K.; DFG (CRU 344, Z to I.G.C and CRU344 P2 to R.K.S.); and the BMBF eMed Consortium Fibromap (to V.G.P, R.K., R.K.S., and I.G.C.). R.K.S received support from the KWF Kankerbestrijding (11031/2017–1, Bas Mulder Award) and a grant by the ERC (deFiber; ERC-StG 757339). J.J. is supported by the Netherlands Organisation for Scientific Research (NWO Veni grant no: 091 501 61 81 01 36) and the DKF (grant no. 19OK005). B.S. is supported by the DKF (grant: 14A3D104) and the NWO (VIDI grant: 016.156.363). R.P.V.R. and G.J.O. are supported by the NWO VICI (grant: 16.VICI.170.090). P.B. is supported by the BMBF (DEFEAT PANDEMIcs, 01KX2021), the Federal Ministry of Health (German Registry for COVID-19 Autopsies-DeRegCOVID, www.DeRegCOVID.ukaachen.de; ZMVI1-2520COR201), and the German Research Foundation (DFG; SFB/TRR219 Project-IDs 322900939 and 454024652). S.D. received DFG support (DJ100/1-1) as well as support from VGP and TBH (SFB1192). M.d.B,R.R., N.S., and A.A. are supported by an ERC Advanced Investigator grant (H2020-ERC-2017-ADV-788982-COLMIN) to N.S. A.A. is supported by the NWO (VI.Veni.192.094). We thank Saskia de Wildt, Jeanne Pertijs (Radboudumc, Department of Pharmacology), and Robert M. Verdijk (Erasmus Medical Center, Department of Pathology) for providing tissue controls (Erasmus MC Tissue Bank) and Christian Drosten (Charite´ Universitatsmedizin Berlin, Institute of € Virology) and Bart Haagmans (Erasmus Medical Center, Rotterdam) for providing the SARS-CoV-2 isolate. We thank Kioa L. Wijnsma (Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Radboud University Medical Center) for support with statistical analysis regarding the COVID-19 patient cohort.Peer reviewedPublisher PD

    References

    No full text
    corecore