10,081 research outputs found

    An altitude-dependent spacecraft charging model

    Get PDF
    A model for the altitude dependence of the hot plasma parameters responsible for the electrostatic charging of spacecraft was developed. Based upon plasma orbit theory, the directed velocity is a function of the ambient magnetic field flux density. A consequence of this approach is that while the thermal velocity distributions (assumed to be Maxwellian) of the plasma particles are independent of the magnetic field strength (and hence altitude), the particle densities increase with magnetic field strength. Thus, according to this model, while the equilibrium voltage is independent of altitude, the charging current density increases with decreasing altitude. However, the probability of such spacecraft charging decreases with decreasing altitude

    The Biochemical and Genetic Odyssey to the Function of a Nicastrin-Like Protein

    Get PDF
    gamma-Secretase is a high-molecular-weight protein complex required for the proteolytic processing of various transmembrane proteins including the Alzheimer's disease-associated amyloid precursor protein and the signaling receptor Notch. One of the gamma-secretase complex components is the type I transmembrane protein nicastrin. Here we review the odyssey to a cyclopic fish, which at the end allowed the functional analysis of nicalin, a novel member of the nicastrin protein family. This 60-kDa protein is part of a previously unknown membrane protein complex unrelated to gamma-secretase and binds to Nomo (Nodal modulator, previously known as pM5), a novel 130-kDa transmembrane protein. Both proteins are highly conserved in metazoans and show almost identical tissue distribution in humans. Functional studies in zebrafish embryos and cultured human cells revealed that nicalin and Nomo collaborate to antagonize the Nodal/TGF beta signaling pathway. Thus, nicastrin and nicalin are both associated with protein complexes involved in cell fate decisions during early embryonic development. Copyright (C) 2004 S. Karger AG, Base

    Cellular functions of gamma-secretase-related proteins

    Get PDF
    Amyloid-beta pepticle (A beta) is generated by gamma-secretase, a membrane protein complex with an unusual aspartyl protease activity consisting of the four components presenilin, nicastrin, APH-1 and PEN-2. Presenilin is considered the catalytic subunit of this complex since it represents the prototype of the new family of intramembrane-cleaving GxGD-type aspartyl proteases. Recently, five novel members of this family and a nicastrin-like protein were identified. Whereas one of the GxGD-type proteins was shown to be identical with signal pepticle peptidase (SPP), the function of the others, now called SPP-like proteins (SPPLs), is not known. We therefore analyzed SPPL2b and SPPL3 and demonstrated that they localize to different subcellular compartments suggesting nonredundant functions. This was supported by different phenotypes obtained in knockdown studies in zebrafish embryos. In addition, these phenotypes could be phenocopied by ectopic expression of putative active site mutants, providing strong evidence for a proteolytic function of SPPL2b and SPPL3. We also identified and characterized the nicastrin-like protein nicalin which, together with the 130-kDa protein NOMO (Nodal modulator), forms a membrane protein complex different from gamma-secretase. We found that during zebrafish embryogenesis this complex is involved in the patterning of the axial mesendoderm, a process controlled by the Nodal signaling pathway. Copyright (c) 2006 S. Karger AG, Basel

    Ionization of Infalling Gas

    Full text link
    H-alpha emission from neutral halo clouds probes the radiation and hydrodynamic conditions in the halo. Armed with such measurements, we can explore how radiation escapes from the Galactic plane and how infalling gas can survive a trip through the halo. The Wisconsin H-Alpha Mapper (WHAM) is one of the most sensitive instruments for detecting and mapping optical emission from the ISM. Here, we present recent results exploring the ionization of two infallling high-velocity complexes. First, we report on our progress mapping H-alpha emission covering the full extent of Complex A. Intensities are faint (<100 mR; EM <0.2 pc cm^-6 but correlate on the sky and in velocity with 21-cm emission. Second, we explore the ionized component of some Anti-Center Complex clouds studied by Peek et al. (2007) that show dynamic shaping from interaction with the Galactic halo.Comment: 4 pages, 2 figures; to appear in proceedings of "The Role of Disk-Halo Interaction in Galaxy Evolution: Outflow vs Infall?" held in Espinho, Portugal during 2008 Augus

    Environmental effects on spacecraft materials

    Get PDF
    The effects on the natural space environments on materials are presented, which may be used for SDI applications. The current state-of-the-art knowledge of those effects was studied, and a literature search, a questionnaire mailing, and some visits to NASA and Air Force research facilities were performed. Phase 2 will be a study of what materials may be used for SDI applications and to what natural space environments they may be vulnerable. Deficiencies in knowledge of the effects of the natural space environments on these materials are to be identified and recommendations are to be made to eliminate these knowledge deficiencies

    Strengthening of foamed composite materials

    Get PDF
    We investigate the shear elastic modulus of soft polymer foams loaded with hard spherical particles and we show that, for constant bubble size and gas volume fraction, strengthening is strongly dependent on the size of those inclusions. Through an accurate control of the ratio λ\lambda that compares the particle size to the thickness of the struts in the foam structure, we evidence a transition in the mechanical behavior at λ1\lambda \approx 1. For λ<1\lambda < 1, every particle loading leads to a strengthening effect whose magnitude depends only on the particle volume fraction. On the contrary, for λ>1\lambda > 1, the strengthening effect weakens abruptly as a function of λ\lambda and a softening effect is even observed for λ10\lambda \gtrsim 10. This transition in the mechanical behavior is reminiscent of the so-called "particle exclusion transition" that has been recently reported within the framework of drainage of foamy granular suspensions [Haffner B, Khidas Y, Pitois O. The drainage of foamy granular suspensions. J Colloid Interface Sci 2015. In Press.]. It involves the evolution for the geometrical configuration of the particles with respect to the foam network, and it appears to control the mechanics of such foamy systems

    Flow and Jamming of Granular Suspensions in Foams

    Get PDF
    The drainage of particulate foams is studied under conditions where the particles are not trapped individually by constrictions of the interstitial pore space. The drainage velocity decreases continuously as the particle volume fraction ϕp\phi_{p} increases. The suspensions jam - and therefore drainage stops - for values ϕp\phi_{p}^{*} which reveal a strong effect of the particle size. In accounting for the particular geometry of the foam, we show that ϕp\phi_{p}^{*} accounts for unusual confinement effects when the particles pack into the foam network. We model quantitatively the overall behavior of the suspension - from flow to jamming - by taking into account explicitly the divergence of its effective viscosity at ϕp\phi_{p}^{*}. Beyond the scope of drainage, the reported jamming transition is expected to have a deep significance for all aspects related to particulate foams, from aging to mechanical properties
    corecore