115 research outputs found

    Potentiel criminalistique de l'étude du trafic de drogues au Canada à partir des données collectées sur les cryptomarchés

    Get PDF
    Cryptomarkets represent a new innovation for illegal goods trafficking, where drugs are predominantly found. After an overview of the features these sites offer, to understand the virtual world in which users operate, a critical analysis of existing criminological studies suggests a forensic support to better understand how to relate this world essentially described by its virtual data, to reality. A descriptive analysis of Canadian market data is performed to depict an overall picture of drug sales and to explore a strategy targeting the most active sellers. Finally, the use of drug profiling as a way to obtain objective empirical data is discussed, as a means of offsetting uncertainty about virtual data. This article is part of a process of connection-making between criminal sciences, criminology, and forensic science, not limited to the criminalization of prohibited practices, but also to the understanding of phenomena and criminal networks for the purpose of developing efficient strategies for monitoring and neutralizing such threats. © 2016 Canadian Society of Forensic Science

    Different mutations in a P-type ATPase transporter in Leishmania parasites are associated with cross-resistance to two leading drugs by distinct mechanisms

    Get PDF
    Work in TKS’s lab is supported by the Wellcome Trust grant 093228 and European Community’s Seventh Framework Programme under grant agreement No. 602773 (Project KINDRED).Leishmania infantum is an etiological agent of the life-threatening visceral form of leishmaniasis. Liposomal amphotericin B (AmB) followed by a short administration of miltefosine (MF) is a drug combination effective for treating visceral leishmaniasis in endemic regions of India. Resistance to MF can be due to point mutations in the miltefosine transporter (MT). Here we show that mutations in MT are also observed in Leishmania AmB-resistant mutants. The MF-induced MT mutations, but not the AmB induced mutations in MT, alter the translocation/uptake of MF. Moreover, mutations in the MT selected by AmB or MF have a major impact on lipid species that is linked to cross-resistance between both drugs. These alterations include changes of specific phospholipids, some of which are enriched with cyclopropanated fatty acids, as well as an increase in inositolphosphoceramide species. Collectively these results provide evidence of the risk of cross-resistance emergence derived from current AmB-MF sequential or co-treatments for visceral leishmaniasis.Publisher PDFPeer reviewe

    Pharmacometabolomics of meglumine antimoniate in patients with cutaneous leishmaniasis

    Get PDF
    Control of cutaneous leishmaniasis (CL) in the Americas is dependent on chemotherapy with parenteral pentavalent antimonials. High rates of treatment failure urge the search for predictive and prognostic markers of therapeutic responsiveness. In this study, we aimed to identify biomarkers of therapeutic response during treatment with meglumine antimoniate (MA). We conducted untargeted metabolomic profiling of plasma samples from CL patients (n = 39; 25 who cured and 14 who did not cure), obtained before and at the end of treatment. Exposure to MA induced metabolic perturbations primarily reflecting alteration in long-chain fatty acid β-oxidation and energy production. Allantoin, N-acetylglutamine, taurine, and pyruvate were significantly more abundant in samples from patients who responded to treatment, and were predictive and prognostic of treatment outcome in this patient cohort (AUC > 0.7). In an ex vivo model of infection, allantoin but not taurine enhanced the MA-dependent killing of intracellular Leishmania (Viannia) panamensis. Our results support the participation of metabolites mediating antioxidant and wound healing responses in clinical cure of CL, revealing relationships between metabolism and immune responses in the outcome of antileishmanial treatment

    Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study

    Get PDF
    In early August 2014, the municipality of Toledo, OH (USA) issued a ‘do not drink’ advisory on their water supply directly affecting over 400,000 residential customers and hundreds of businesses (Wilson, 2014). This order was attributable to levels of microcystin, a potent liver toxin, which rose to 2.5 mg L1 in finished drinking water. The Toledo crisis afforded an opportunity to bring together scientists from around the world to share ideas regarding factors that contribute to bloom formation and toxigenicity, bloom and toxin detection as well as prevention and remediation of bloom events. These discussions took place at an NSF- and NOAA-sponsored workshop at Bowling Green State University on April 13 and 14, 2015. In all, more than 100 attendees from six countries and 15 US states gathered together to share their perspectives. The purpose of this review is to present the consensus summary of these issues that emerged from discussions at the Workshop. As additional reports in this special issue provide detailed reviews on many major CHAB species, this paper focuses on the general themes common to all blooms, such as bloom detection, modeling, nutrient loading, and strategies to reduce nutrients

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue

    Get PDF
    Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore