16 research outputs found

    Integrative literature review of the reported uses of serological tests in leprosy management

    Get PDF
    Abstract: An integrative literature review was conducted to synthesize available publications regarding the potential use of serological tests in leprosy programs. We searched the databases Literatura Latino-Americana e do Caribe em Ciências da Saúde, Índice Bibliográfico Espanhol em Ciências da Saúde, Acervo da Biblioteca da Organização Pan-Americana da Saúde, Medical Literature Analysis and Retrieval System Online, Hanseníase, National Library of Medicine, Scopus, Ovid, Cinahl, and Web of Science for articles investigating the use of serological tests for antibodies against phenolic glycolipid-I (PGL-I), ML0405, ML2331, leprosy IDRI diagnostic-1 (LID-1), and natural disaccharide octyl-leprosy IDRI diagnostic-1 (NDO-LID). From an initial pool of 3.514 articles, 40 full-length articles fulfilled our inclusion criteria. Based on these papers, we concluded that these antibodies can be used to assist in diagnosing leprosy, detecting neuritis, monitoring therapeutic efficacy, and monitoring household contacts or at-risk populations in leprosy-endemic areas. Thus, available data suggest that serological tests could contribute substantially to leprosy management

    Importance of TLR2 on Hepatic Immune and Non-Immune Cells to Attenuate the Strong Inflammatory Liver Response During Trypanosoma cruzi Acute Infection

    Get PDF
    Trypanosoma cruzi, an obligate intracellular protozoan, is the etiological agent of Chagas Disease that represents an important public health burden in Latin America. The infection with this parasite can lead to severe complications in cardiac, liver and gastrointestinal tissue depending on the strain of parasite and host genetics. Recently, we reported a fatal liver injury in T. cruzi infected B6 mice. However, the local immune response against this parasite is poorly understood. This work highlights some of the molecular and cellular mechanisms involved in liver pathology during the acute phase of infection. Using two mouse strains with different genetic backgrounds and responses to infection, B6 and BALB/c, we found that infected B6 mice develop a strong pro-inflammatory environment associated with high TLR9 expression. Conversely, infected BALB/c mice showed a more balanced inflammatory response in liver. Moreover, higher TLR2 and TLR4 expression were found only in hepatocytes from BALB/c. These data emphasize the importance of an adequate integration of signalling between immune and non-immune cells to define the outcome of infection. In addition, the pre-treatment with TLR2-agonist reverts the strong pro-inflammatory environment in T. cruzi infected B6 mice. These results could be useful in the understanding and design of novel immune strategies in controlling liver pathologies

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    The rumen microbial metagenome associated with high methane production in cattle

    Get PDF
    Acknowledgements The Rowett Institute of Nutrition and Health and SRUC are funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. The project was supported by Defra and the DA funded Agricultural Greenhouse Gas Inventory Research Platform, the Technology Strategy Board (Project No: TP 5903–40240) and the Biotechnology and Biological Sciences Research Council (BBSRC; BB/J004243/1, BB/J004235/1). Our thanks are due to the excellent support staff at the SRUC Beef and Sheep Research Centre, Edinburgh, and to Silvia Ramos Garcia for help in interrogating the data. MW and RR contributed equally to the paper and should be considered as joint last authors.Peer reviewedPublisher PD

    The potato and its contribution to the human diet and health.

    No full text
    Potato has contributed to human diet for thousands of years, first in the Andes of South America and then in the rest of the world. Its contribution to the human diet is affected by cooking, potato intake levels, and the bioavailability of potato nutrients. Generally, the key nutrients found in potatoes including minerals, proteins, and dietary fiber are well retained after cooking. Vitamins C and B6 are significantly reduced after cooking while carotenoids and anthocyanins show high recoveries after cooking due to an improved release of these antioxidants. In many developed countries potatoes are consumed as a vegetable with intakes that vary from 50 to 150 g per day for adults. On the other hand, in some rural areas of Africa and in the highlands of Latin American countries, potato is considered a staple crop and is consumed in large quantities with intakes that vary from 300 to 800 g per day for adults. These marked differences in the potato intake affect significantly the contribution of potato nutrients to the human dietary requirements. In recent years, information about nutrient bioaccessibility and bioavailability from potatoes has become available indicating higher bioaccessibility of minerals and vitamins in potato as compared with other staple crops such as beans or wheat. Bioavailability refers to the fraction of an ingested nutrient that is available for utilization in normal physiological functions and/or for body storage while bioaccessibility refers to the amount that is potentially absorbable from the gut lumen. In addition, potatoes have shown promising health-promoting properties in human cell culture, experimental animal and human clinical studies, including anticancer, hypocholesterolemic, anti-inflammatory, anti-obesity, and antidiabetic properties with phenolics, anthocyanins, fiber, resistant starch, carotenoids as well as glycoalkaloids contributing to the health benefits of potatoes
    corecore