25 research outputs found

    Grazing cattle exposure to neighbouring herds and badgers in relation to bovine tuberculosis risk

    Get PDF
    Publication history: Accepted - 28 September 2020; Published online - 30 September 2020.Bovine tuberculosis (bTB) can be spread between and among cattle and wildlife hosts e.g. European badger (Meles meles). The majority of cattle in the UK and Ireland are grazed during the summer, potentially exposing them to Mycobacterium bovis. 18 farms were surveyed (39% dairy, 61% beef; fields n = 697) for one grazing season (May-November 2016, n = 148,461 field days) to quantify the co-occurrence of cattle with badger setts and latrines and adjacency to neighbouring cattle herds. 3% (n = 24) of the fields had a badger sett or latrine recorded, dairy cattle were significantly more likely to co-occur with badger setts and latrines than beef cattle. Most farms (89%) grazed cattle adjacent to a neighbouring herd, which accounted for 18% of the grazing season. Potential exposure to neighbouring herds did not differ between production systems but did vary between life stages. A significant positive association between the proportion of time cattle spent grazing fields with setts present and the historic 1-, 3- and 5- year bTB status (p = 0.007, p = 0.013 and p = 0.013 respectively) was found. However, when cattle were grazed in fields with latrines, a significant negative association was found between the proportion of time cattle spent grazing fields with latrines present and the historic 3- and 5- year bTB status (p = 0.033 and p = 0.012 respectively). Historic bTB status and percentage of days spent beside a neighbouring herd was unrelated. Idiosyncrasies at farm-level and between risk factors indicated that individual farm assessments would be beneficial to understand potential exposure risk.This research was funded as part of a PhD studentship by the Department of Agriculture, Environment and Rural Affair

    A Bayesian analysis of a Test and Vaccinate or Remove study to control bovine tuberculosis in badgers (Meles meles)

    Get PDF
    Publication history: Accepted - 13 January 2021; Published - 28 January 2021.A novel five year Test and Vaccinate or Remove (TVR) wildlife research intervention project in badgers (Meles meles) commenced in 2014 in a 100km2 area of Northern Ireland. It aimed to increase the evidence base around badgers and bovine TB and help create well-informed and evidence-based strategies to address the issue of cattle-to-cattle spread and spread between cattle and badgers. It involved real-time trap-side testing of captured badgers and vaccinating those that tested negative for bTB (BadgerBCG–BCG Danish 1331) and removal of those that tested bTB positive using the Dual-Path Platform VetTB test (DPP) for cervids (Chembio Diagnostic Systems, Medford, NY USA). Four diagnostic tests were utilised within the study interferon gamma release assay (IGRA), culture (clinical samples and post mortem), DPP using both whole blood and DPP using serum. BCG Sofia (SL222) was used in the final two years because of supply issues with BadgerBCG. Objectives for this study were to evaluate the performance of the DPP in field conditions and whether any trend was apparent in infection prevalence over the study period. A Bayesian latent class model of diagnostic test evaluation in the absence of a gold standard was applied to the data. Temporal variation in the sensitivity of DPP and interferon gamma release assay (IGRA) due to the impact of control measures was investigated using logistic regression and individual variability was assessed. Bayesian latent class analysis estimated DPP with serum to have a sensitivity of 0.58 (95% CrI: 0.40–0.76) and specificity of 0.97 (95% CrI: 0.95–0.98). The DPP with whole blood showed a higher sensitivity (0.69 (95% CrI: 0.48–0.88)) but similar specificity (0.98 (95% Crl: 0.96–0.99)). The change from BCG Danish to BCG Sofia significantly impacted on DPP serum test characteristics. In addition, there was weak evidence of increasing sensitivity of IGRA over time and differences in DPP test sensitivity between adults and cubs. An exponential decline model was an appropriate representation of the infection prevalence over the 5 years, with a starting prevalence of 14% (95% CrI: 0.10–0.20), and an annual reduction of 39.1% (95% CrI: 26.5–50.9). The resulting estimate of infection prevalence in year 5 of the study was 1.9% (95% CrI: 0.8–3.8). These results provide field evidence of a statistically significant reduction in badger TB prevalence supporting a TVR approach to badger intervention. They give confidence in the reliability and reproducibility in the DPP Whole Blood as a real time trap-side diagnostic test for badgers, and describe the effect of vaccination and reduced infection prevalence on test characteristics.The study was funded by the Department of Agriculture, Environment and Rural Affairs in Northern Ireland (DAERA)

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe
    corecore