352 research outputs found

    Corneal ulcerative disease in dogs under primary veterinary care in England: epidemiology and clinical management

    Get PDF
    Abstract Background Corneal ulcerative disease (CUD) has the potential to adversely affect animal welfare by interfering with vision and causing pain. The study aimed to investigate for the first time the prevalence, breed-based risk factors and clinical management of CUD in the general population of dogs under primary veterinary care in England. Results Of 104,233 dogs attending 110 clinics participating within the VetCompass Programme from January 1st to December 31st 2013, there were 834 confirmed CUD cases (prevalence: 0.80%, 95% confidence interval (CI) 0.75–0.86). Breeds with the highest prevalence included Pug (5.42% of the breed affected), Boxer (4.98%), Shih Tzu (3.45%), Cavalier King Charles Spaniel (2.49%) and Bulldog (2.41%). Purebred dogs had 2.23 times the odds (95% CI 1.84–2.87, P < 0.001) of CUD compared with crossbreds. Brachycephalic types had 11.18 (95% CI 8.72–14.32, P < 0.001) and spaniel types had 3.13 (95% CI 2.38–4.12, P < 0.001) times the odds for CUD compared with crossbreds. Pain was recorded in 385 (46.2%) cases and analgesia was used in 455 (54.6%) of dogs. Overall, 62 (7.4%) cases were referred for advanced management and CUD contributed to the euthanasia decision for 10 dogs. Conclusions Breeds such as the Pug and Boxer, and conformational types such as brachycephalic and spaniels, demonstrated predisposition to CUD in the general canine population. These results suggest that breeding focus on periocular conformation in predisposed breeds should be considered in order to reduce corneal disease

    TFEB regulates murine liver cell fate during development and regeneration

    Get PDF
    It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer

    High Quality Care and Ethical Pay-for-Performance: A Society of General Internal Medicine Policy Analysis

    Get PDF
    BACKGROUND: Pay-for-performance is proliferating, yet its impact on key stakeholders remains uncertain. OBJECTIVE: The Society of General Internal Medicine systematically evaluated ethical issues raised by performance-based physician compensation. RESULTS: We conclude that current arrangements are based on fundamentally acceptable ethical principles, but are guided by an incomplete understanding of health-care quality. Furthermore, their implementation without evidence of safety and efficacy is ethically precarious because of potential risks to stakeholders, especially vulnerable patients. CONCLUSION: We propose four major strategies to transition from risky pay-for-performance systems to ethical performance-based physician compensation and high quality care. These include implementing safeguards within current pay-for-performance systems, reaching consensus regarding the obligations of key stakeholders in improving health-care quality, developing valid and comprehensive measures of health-care quality, and utilizing a cautious evaluative approach in creating the next generation of compensation systems that reward genuine quality

    Brain connectivity changes occurring following cognitive behavioural therapy for psychosis predict long-term recovery

    Get PDF
    Little is known about the psychobiological mechanisms of cognitive behavioural therapy for psychosis (CBTp) and which specific processes are key in predicting favourable long-term outcomes. Following theoretical models of psychosis, this proof-of-concept study investigated whether the long-term recovery path of CBTp completers can be predicted by the neural changes in threatbased social affective processing that occur during CBTp. We followed up 22 participants who had undergone a social affective processing task during functional magnetic resonance imaging along with self-report and clinician-administered symptom measures, before and after receiving CBTp. Monthly ratings of psychotic and affective symptoms were obtained retrospectively across 8 years since receiving CBTp, plus self-reported recovery at final follow-up. We investigated whether these long-term outcomes were predicted by CBTp-led changes in functional connections with dorsal prefrontal cortical and amygdala during the processing of threatening and prosocial facial affect. Although long-term psychotic symptoms were predicted by changes in prefrontal connections during prosocial facial affective processing, long-term affective symptoms were predicted by threat-related amygdalo-inferior parietal lobule connectivity. Greater increases in dorsolateral prefrontal cortex connectivity with amygdala following CBTp also predicted higher subjective ratings of recovery at long-term follow-up. These findings show that reorganisation occurring at the neural level following psychological therapy can predict the subsequent recovery path of people with psychosis across 8 years. This novel methodology shows promise for further studies with larger sample size, which are needed to better examine the sensitivity of psychobiological processes, in comparison to existing clinical measures, in predicting long-term outcomes.Wellcome Trust; Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology & Neuroscience, King’s College London and South London and Maudsley NHS Foundation Trust, U

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Measurement of the tt¯tt¯ production cross section in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26+17−15 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24+7−6 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb
    corecore